为IoT和大数据项目分配IT资源

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

大数据和物联网项目给IT基础架构带来了前所未有的压力。

Internet of Things(IoT) 和大数据应用已经给网络和存储架构带来了压力,更不用说这还需要IT专家使用不同的技能和工具来管理这些新的部署了。

虽然执行起来很有挑战性,但是也有一些为IT团队而设的指导方针来帮助他们托管IoT和大数据。这得从审查基础架构中大规模、数据密集型的项目需求开始。

更多的处理能力

一旦项目进入到具体的实施阶段,IT组织连同它的硬件、软件和服务供应商很可能需要去定义合适的系统架构和操作系统,每个系统处理器的数量以及系统的数量——不管是物理的、虚拟的还是基于云的——这需要一些主动性。

大数据项目大部分是基于Windows或者Linux操作系统,架构在业界标准的x86平台服务器上的。但在一些情况下,也有一些基于大型机或者单 一厂商系统架构和操作系统的实用的工具。大多数情况下,IT团队会将业界标准的服务器使用scale-out架构做成集群,以支持需要大量计算、内存、网 络和存储的负载。

IoT项目也趋向于包含基于单一厂家的后端系统以及大型机。

要最大化可使用的处理能力,同时减少在硬件上的总体投资,需要很好地对系统、集群和其他组件进行配置。这需要很明白企业的目标以及深入了解所选的大 数据工具和NoSQL数据库。同样的,对于选择与繁杂的不同智能手机、平板、汽车和从未如此扩张的其他智能设备进行通信的工具,也需要有一定的了解。

错误配置的服务器集群或者其他基础架构的重大错失(甚至选择了错误的工具)都可能成为项目操作的阻碍并且导致项目失败。

有一些后端数据分析和报告工具在一个大集群系统里面运行,有一些则通过其他小的集群来支持:一些小集群负责存储分析需要用的原始数据,有一些小集群 负责提供将原始数据处理成有用信息的工具,另一些小集群可能被用来支持将有用的信息转换为适合的格式(表格、图形或者其他形式),提供给分析师或者数据科 学家。

IoT项目还需要增加响应客户设备,提供需求的信息、指导或帮助的功能。企业需要熟悉这些工具的专家,以及对如何使用这些工具有很全面的了解。

为自己信任的顾问和供应商投入时间,学习对选择的这些工具和方法进行技术支持需要什么。

对于内存、存储和网络的关注

仅仅增加更多的系统、内存和存储并不总能提高IoT和大数据环境的综合性能。不同的方法和工具需要不一样的系统内存和处理能力。

每一种方法和所关联的工具都有自己的限制。建设IoT和/或大数据平台的IT规划师需要对每一种考虑在内的工具所需要的资源进行调研,同时需要知道在资源充足的情况下他们会使用哪一种工具。

如果企业安装了比所选工具所需更多的内存,那么这仅仅会增加能源消耗和热量。非但不会给整体性能带来任何帮助,反而会给数据中心能源和冷却系统带来不需要的压力。

IoT和大数据平台另一个参数是存储的性能和容量。就像处理能力和内存容量一样,存储设备的选择、存储的专用能力和存储的联网方式都能对大数据产品的优化性能有帮助。在IoT技术的例子里,响应速度的快慢将直接影响到客户是否喜欢这个企业(产品)。

就和内存和计算组件一样,存储的配置也必须满足所选工具和方法的需求。不要指望简单通过添加更多存储,选择更快的设备或者升级存储网络来得到效果。即使存储性能增加了,但是也可能被网络瓶颈带来的影响抵消。

有一些大数据工具使用额外的内存能力作为数据存储的一部分,创造了内存里的数据库。这种方法能加速分析和报告的处理。但这是一种需要权衡的方法,因为如果系统没有被可依赖的电力保护着,一旦失去电力则数据也会丢失。

不要被卷入任何一种存储或者存储网络的炒作中。分析师会指出寄存于内存的数据库或者闪存存储并不会对所有情况都适合。

有一些存储虚拟化软件厂家,例如DataCore Software注意到了底层操作系统每一次只能处理一个单一的I/O请求。它的方式是通过增加软件来让操作系统能同一时间同步处理多个请求。

显而易见的是不充分提供(underprovisioned)或者设计失败的存储系统会给大数据或者IoT系统带来效果的降低。

网络架构对于任何分布式或者集群计算工具来说都是至关重要的。它的容量、延迟和性能可以促进或阻碍这类技术。和处理器、内存和存储一样,网络架构也需要细心选择。

当大数据工具需要一些数据的时候,如果网络没有足够的容量、响应慢或者对于不同类型I/O请求有偏向,那么性能就会变得很差。同样的事情对处理IoT系统里面智能设备发出的小型、突发式的请求处理上却并非如此。因此要对两种类型的请求进行平衡是一种挑战。

对于其他的组件,需要对网络媒介特性进行调研,例如Gigabit以太网或Fibre Channel,在购买网络之前进行成本/效益分析。

我曾经看到过一个项目,其目标是捕获百万级别的小型移动设备信息,并且进行分析——这是一个早期的IoT项目。这个公司发现它的网络处理在负载的时候不够快,因为网络设计之初是为了管理大型数据传输而非百万个小型数据请求的。



原文发布时间为:2016年3月23日

本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。e

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
消息中间件 SQL 分布式计算
大数据-64 Kafka 高级特性 分区Partition 分区重新分配 实机实测重分配
大数据-64 Kafka 高级特性 分区Partition 分区重新分配 实机实测重分配
124 7
|
29天前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
2月前
|
存储 大数据 Serverless
大数据增加分区优化资源使用
大数据增加分区优化资源使用
37 1
|
3月前
|
消息中间件 分布式计算 算法
大数据-67 Kafka 高级特性 分区 分配策略 Ranger、RoundRobin、Sticky、自定义分区器
大数据-67 Kafka 高级特性 分区 分配策略 Ranger、RoundRobin、Sticky、自定义分区器
58 3
|
3月前
|
资源调度 分布式计算 大数据
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
130 0
|
5月前
|
图形学 数据可视化 开发者
超实用Unity Shader Graph教程:从零开始打造令人惊叹的游戏视觉特效,让你的作品瞬间高大上,附带示例代码与详细步骤解析!
【8月更文挑战第31天】Unity Shader Graph 是 Unity 引擎中的强大工具,通过可视化编程帮助开发者轻松创建复杂且炫酷的视觉效果。本文将指导你使用 Shader Graph 实现三种效果:彩虹色渐变着色器、动态光效和水波纹效果。首先确保安装最新版 Unity 并启用 Shader Graph。创建新材质和着色器图谱后,利用节点库中的预定义节点,在编辑区连接节点定义着色器行为。
350 0
|
5月前
|
消息中间件 存储 传感器
RabbitMQ 在物联网 (IoT) 项目中的应用案例
【8月更文第28天】随着物联网技术的发展,越来越多的设备被连接到互联网上以收集和传输数据。这些设备可以是传感器、执行器或其他类型的硬件。为了有效地管理这些设备并处理它们产生的大量数据,需要一个可靠的消息传递系统。RabbitMQ 是一个流行的开源消息中间件,它提供了一种灵活的方式来处理和转发消息,非常适合用于物联网环境。
219 1
|
5月前
|
资源调度 分布式计算 Hadoop
揭秘Hadoop Yarn背后的秘密!它是如何化身‘资源大师’,让大数据处理秒变高效大戏的?
【8月更文挑战第24天】在大数据领域,Hadoop Yarn(另一种资源协调者)作为Hadoop生态的核心组件,扮演着关键角色。Yarn通过其ResourceManager、NodeManager、ApplicationMaster及Container等组件,实现了集群资源的有效管理和作业调度。当MapReduce任务提交时,Yarn不仅高效分配所需资源,还能确保任务按序执行。无论是处理Map阶段还是Reduce阶段的数据,Yarn都能优化资源配置,保障任务流畅运行。此外,Yarn还在Spark等框架中展现出灵活性,支持不同模式下的作业执行。未来,Yarn将持续助力大数据技术的发展与创新。
75 2
|
6月前
|
SQL 分布式计算 DataWorks
DataWorks产品使用合集之使用API调用ODPS SQL时,出现资源被定时任务抢占,该怎么办
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
101 32
|
5月前
|
机器学习/深度学习 设计模式 人工智能
面向对象方法在AIGC和大数据集成项目中的应用
【8月更文第12天】随着人工智能生成内容(AIGC)和大数据技术的快速发展,企业面临着前所未有的挑战和机遇。AIGC技术能够自动产生高质量的内容,而大数据技术则能提供海量数据的支持,两者的结合为企业提供了强大的竞争优势。然而,要充分利用这些技术,就需要构建一个既能处理大规模数据又能高效集成机器学习模型的集成框架。面向对象编程(OOP)以其封装性、继承性和多态性等特点,在构建这样的复杂系统中扮演着至关重要的角色。
79 3

热门文章

最新文章