IBM观点:工业4.0是大数据驱动的智能工业

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

ZDNET至顶网CIO与应用频道 03月10日 北京消息:任何一个舶来品想要融入中国都需要适应中国特色,工业4.0也不例外。工业4.0不仅是对生产方式的颠覆也是对生活方式的颠覆。

工业4.0的到来,与消费者自我意识觉醒及技术进步有着密切的关系。在IBM 看来,工业4.0是大数据驱动的智能工业。这些转变同首席执行客户(CEC)的出现有着很大的关系。并且随着企业进入D世代,不仅需要成为数据分析驱动型企业,还要战略性运用云计算、移动、社交和大数据分析工具,掌握并预测以客户为中心的市场状况和变化趋势,并根据数据洞察生成最佳行动建议,数据贯穿企业研发、生产、营销、服务等管理运作。

企业要想在数据驱动的工业4.0时代一帆风顺,就需要在加强客户洞察方面,重视数据对于把握CEC需求的重要性。以及在推动制造研发的突破方面,可以尝试让用户的互动参与为研发带来价值,并且用数据辅助生产的智能化。

工业4.0 大数据驱动的智能工业

通过对消费者行为的追踪并由此所捕捉的大量消费数据必须利用数据科学进行计算与建模,并自动转化为商业决策与运营模式,然后通过工业4.0,随时动态调整生产流程来因应消费需求的动态变化。

中国已经进入了D世代,早在2010 年时,制造业所新增的数据便将近2EB(计算机存储单位),大数据也顺理成章的成为工业4.0的驱动力。

这也符合IBM所理解的工业4.0,即大数据驱动的智能工业。“这是一场由首席执行客户(CEC)推动的,以‘D世代企业’(大数据分析驱动型企业)的诞生与发展为标志的,以大数据、云计算、移动、社交等技术为主要驱动手段的工业革命。最突出的一点是,大数据深刻改变了工业企业的生产和决策。”IBM大中华区副总裁冯国华说道。

IBM观点:工业4.0是大数据驱动的智能工业 

IBM大中华区副总裁冯国华

在工业4.0趋势下,工业的信息化水平进一步提升,尤其是互联化和智能化的提升。制造业在其转型升级可以概括为三方面:第一,产品智能化;第二,流程的智能化升级;第三,制造业的互联网化。在转型升级的进程,也将产生大量数据,企业需要思考如何对大数据进行分析和管理。

IBM的CAMSS技术(C是指Cloud云;A是指BigData &Analytics,大数据和分析;M是指Mobility移动;第一个S是指Social社交,第二个S则是指Security安全),将助力中国企业、行业构建大数据能力,助力中国工业4.0的契机实现转型升级。

D世代为企业带来新能力

在D世代中企业也需要不断进化,其中制造业正经历蜕变式的升级,企业需要更迅速的获取客户的需求与反馈,这归根结底是新时代消费者需求的变化。消费者已经参与到战略、研发、生产、执行各个环节中,成为首席执行客户(CEC),其推动企业从供应链转向需求链,从产品为中心到以需求为中心,从基础架构到信息架构。

CEC具有三大特征:

1.采购决策更多地建立在信息和数据分析的基础上;

2.要求个性化的产品、服务和体验;

3.开始拥有决定商业行为的主导权和更大的市场影响力;

因此,为了更好地适应消费者的转变,传统制造企业需要借助大数据云计算、社交、移动等新技术推动企业转型,从而帮助企业更好地满足消费者的需求。并由此催生出IBM董事长、总裁和首席执行官罗睿兰在2014年11月Think Forum 提出“D世代企业”。

“D世代企业”可以战略性运用云计算、移动、社交和大数据分析工具,掌握并预测以客户为中心的市场状况和变化趋势,并根据数据洞察生成最佳行动建议,数据贯穿企业研发、生产、营销、服务等管理运作,产生更多之前不曾拥有的新能力。

IBM观点:工业4.0是大数据驱动的智能工业

D世代企业的新能力

工业4.0在中国的发展道路不能只是拿来主义,IBM大中华区副总裁冯国华认为,全面资源供应链体系、最大的本土市场和最具活力的互联网应用趋势是中国具有独特的工业和市场基础。中国需要充分开发大数据资源、云计算基础上重新构造企业IT—寻找新的业务模式,以靠近市场的优势带动创新。这也要求企业加强客户洞察、推动制造研发的突破、实现生产智能化。

工业4.0的大数据驱动路径

在数据驱动的商业和工业4.0时代,企业需要加强客户洞察、推动制造研发的突破,以及实现生产智能化。冯国华认为,三点不能割裂,它们之间只有协同作用才能成就新型的工业企业并输出价值。

在加强客户洞察方面,重视数据对于把握CEC需求的重要性。IBM认为,任何一家企业都必须要有客户的数据,只有掌握360度客户数据,不仅包括客户的职业等基础信息,还须包括偏好、行为、交易信息,才有可能帮助我们去真正获得客户洞察。但不少中国企业的数据意识有待提升,需要减少数据流失。

在推动制造研发的突破方面,可以尝试让用户的互动参与为研发带来价值。冯国华认为,以海量资料分析为核心的创新研发能力,将攸关制造业者如何在日益艰辛的订单争夺战中脱颖而出。研发团队可透过大量的意见回馈,改善测试的周期时间、质量和效率,让企业更快响应市场,抢得先机。

在实现生产智能化层面,其实现在有很多制造型企业已经开始尝试并受益。制造业是带动中国社会发展转型的火车头,也是经济成长和就业市场的中流砥柱。近年来,由于科技发达和贸易障碍减少,各生产地可针对制造过程中某些环节发展专业能力,厂商为了节省成本,跨国设计、采购、组装、制造、营销和服务的生产网络远比过去扩散和零碎,复杂度更甚以往。

我们来看看Blizzard Ski是如何通过数据驱动运营,Blizzard Ski是一家滑雪板生产商,每年生产大约40 万副滑雪板,其中有些型号使用多达18 种材料并需要长达16 个星期的生产时间。通过使用数据,该公司开始预测滑雪运动趋势、天气模式以及影响其业务的其他短期市场变化,并且现在能够迅速满足某些滑雪镇不断变化的需求。数据还使该公司能够对其供应商进行监控,使得无论需求如何变化,供应商都能满足他们的需求,实现生产周期缩短至8 个星期,并且变得更加灵活。

原文发布时间为:2015年03月10日
本文作者:王聪彬
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
存储 数据采集 监控
大数据技术:开启智能决策与创新服务的新纪元
【10月更文挑战第5天】大数据技术:开启智能决策与创新服务的新纪元
|
1月前
|
SQL 消息中间件 分布式计算
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
94 0
|
1月前
|
SQL 分布式计算 大数据
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
67 0
|
3月前
|
运维 算法 数据可视化
【2021 高校大数据挑战赛-智能运维中的异常检测与趋势预测】2 方案设计与实现-Python
文章详细介绍了参加2021高校大数据挑战赛中智能运维异常检测与趋势预测任务的方案设计与Python实现,包括问题一的异常点和异常周期检测、问题二的异常预测多变量分类问题,以及问题三的多变量KPI指标预测问题的算法过程描述和代码实现。
75 0
|
21天前
|
机器学习/深度学习 人工智能 运维
智能运维:大数据与AI的融合之道###
【10月更文挑战第20天】 运维领域正经历一场静悄悄的变革,大数据与人工智能的深度融合正重塑着传统的运维模式。本文探讨了智能运维如何借助大数据分析和机器学习算法,实现从被动响应到主动预防的转变,提升系统稳定性和效率的同时,降低了运维成本。通过实例解析,揭示智能运维在现代IT架构中的核心价值,为读者提供一份关于未来运维趋势的深刻洞察。 ###
75 10
|
1月前
|
存储 数据采集 分布式计算
大数据技术:开启智能时代的新引擎
【10月更文挑战第5天】大数据技术:开启智能时代的新引擎
|
3月前
|
自然语言处理 供应链 数据可视化
大数据在市场营销中的应用案例:精准洞察,驱动增长
【8月更文挑战第25天】大数据在市场营销中的应用案例不胜枚举,它们共同展示了大数据技术在精准营销、市场预测、用户行为分析等方面的巨大潜力。通过深度挖掘和分析数据,企业能够更加精准地洞察市场需求,优化营销策略,提升市场竞争力。未来,随着大数据技术的不断发展和普及,其在市场营销领域的应用将更加广泛和深入。
1134 3
|
3月前
|
存储 人工智能 分布式计算
阿里云智能大数据演进
本文根据7月24日飞天发布时刻产品发布会、7月5日DataFunCon2024·北京站:大数据·大模型.双核时代实录整理而成
|
4月前
|
存储 算法 数据可视化
云上大数据分析平台:解锁数据价值,驱动智能决策新篇章
实时性与流式处理:随着实时数据分析需求的增加,云上大数据分析平台将更加注重实时性和流式处理能力的建设。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。
674 8
|
3月前
|
机器学习/深度学习 运维 算法
【2021 高校大数据挑战赛-智能运维中的异常检测与趋势预测】1 赛后总结与分析
对2021高校大数据挑战赛中智能运维异常检测与趋势预测赛题的赛后总结与分析,涉及赛题解析、不足与改进,并提供了异常检测、异常预测和趋势预测的方法和模型选择的讨论。
109 0
【2021 高校大数据挑战赛-智能运维中的异常检测与趋势预测】1 赛后总结与分析