力行《促进大数据发展行动纲要》 普元数据治理解决方案出炉

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

ZD至顶网CIO与应用频道 09月07日 北京消息:近日,国务院正式印发《促进大数据发展行动纲要》,这意味着我国大数据产业将迎来顶层设计。

《行动纲要》部署三方面主要任务。一要加快政府数据开放共享,推动资源整合,提升治理能力。二要推动产业创新发展,培育新兴业态,助力经济转型。三要强化安全保障,提高管理水平,促进健康发展。可见,运用大数据推动经济发展、完善社会治理、提升政府服务和监管能力正成为趋势,应用深度和广度正在不断加深扩大。

而多年来持续关注大数据领域的普元,其助力企业进行的数据治理应用深度与广度也不断拓深。自2013年加入OASIS国际标准组织KVDB TC(键值数据库应用接口技术委员会)以来,普元积极参与大数据国际标准制订工作。

如今,普元已经提出“人人都有大数据,人人能用大数据”的核心理念,并形成了一系列的大数据产品与解决方案,已在多个政府机构与企业应用,帮助政府机构与企业建立大数据共享平台,帮助政府与企业提供创新的数据使用模式,帮助政府与企业提高数据管理能力。

目前,普元大数据系列产品由大数据集成平台、大数据治理平台、大数据应用平台等三项优势平台构成,解决在大数据情况下传统数据工具无法解决的问题,包括大数据的集成、大数据的管理和大数据的分析,帮助政府和企业提高大数据的处理能力,挖掘大数据的价值,利用大数据进行分析、决策,提高经营管理能力和客户服务水平,提高数据质量。

在多年实践的基础上,普元最新推出了《企业数据治理最佳实践》这一数据治理解决方案白皮书,通过普元大数据团队多年来在运营商、金融、制造业等多行业的大数据实施经验,分析出数据治理的七大要素,并建立了企业数据成熟度模型评估,为企业量身定做适合企业的大数据实践路线。

力行《促进大数据发展行动纲要》 普元数据治理解决方案出炉

企业数据成熟度划分

力行《促进大数据发展行动纲要》 普元数据治理解决方案出炉

数据规划的过程

目前,普元大数据产品已在国家开发银行、江西电力、上海移动、长安汽车等企业用户中成功应用。

原文发布时间为:2015年9月7日
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
86 1
|
9天前
|
机器学习/深度学习 存储 数据采集
解锁DataWorks:一站式大数据治理神器
解锁DataWorks:一站式大数据治理神器
31 1
|
1月前
|
数据采集 分布式计算 大数据
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第27天】在数字化时代,数据治理对于确保数据资产的保值增值至关重要。本文探讨了大数据平台的搭建和数据质量管理的重要性及实践方法。大数据平台应包括数据存储、处理、分析和展示等功能,常用工具如Hadoop、Apache Spark和Flink。数据质量管理则涉及数据的准确性、一致性和完整性,通过建立数据质量评估和监控体系,确保数据分析结果的可靠性。企业应设立数据治理委员会,投资相关工具和技术,提升数据治理的效率和效果。
107 2
|
6月前
|
数据采集 监控 大数据
大数据时代的数据质量与数据治理策略
在大数据时代,高质量数据对驱动企业决策和创新至关重要。然而,数据量的爆炸式增长带来了数据质量挑战,如准确性、完整性和时效性问题。本文探讨了数据质量的定义、重要性及评估方法,并提出数据治理策略,包括建立治理体系、数据质量管理流程和生命周期管理。通过使用Apache Nifi等工具进行数据质量监控和问题修复,结合元数据管理和数据集成工具,企业可以提升数据质量,释放数据价值。数据治理需要全员参与和持续优化,以应对数据质量挑战并推动企业发展。
1687 3
|
2月前
|
弹性计算 缓存 搜索推荐
大数据个性化推荐,AWS终端用户解决方案
大数据个性化推荐,AWS终端用户解决方案
|
7月前
|
存储 SQL 分布式计算
闲侃数仓优化-大数据治理和优化
闲侃数仓优化-大数据治理和优化
78 0
|
4月前
|
SQL 存储 分布式计算
"SQLTask携手Tunnel:打造高效海量数据导出解决方案,轻松应对大数据挑战
【8月更文挑战第22天】SQLTask搭配Tunnel实现高效海量数据导出。SQLTask擅长执行复杂查询,但直接导出受限(约1万条)。Tunnel专注数据传输,无大小限制。二者结合,先用SQLTask获取数据,再通过Tunnel高效导出至目标位置(如CSV、OSS等),适用于大数据场景,需配置节点及连接,示例代码展示全过程,满足企业级数据处理需求。
87 2
|
5月前
|
存储 弹性计算 大数据
阿里云ECS以其强大的弹性计算与存储能力,为大数据处理提供了灵活、高效、成本优化的解决方案
阿里云ECS在大数据处理中发挥关键作用,提供多样化实例规格适应不同需求,如大数据型实例适合离线计算。ECS与OSS集成实现大规模存储,通过Auto Scaling动态调整资源,确保高效运算。案例显示,使用ECS处理TB级数据,速度提升3倍,成本降低40%,展现其在弹性、效率和成本优化方面的优势。结合阿里云生态系统,ECS助力企业数据驱动创新。
112 1
|
5月前
|
数据采集 存储 数据可视化
数加产品家族图解:一站式大数据处理与分析解决方案
数加产品家族作为阿里云一站式大数据处理与分析解决方案的重要组成部分,以其全面的功能和强大的性能,为企业提供了从数据采集、存储、处理到分析的全链路解决方案。通过图解的形式,我们深入解析了数加产品家族的各个组成部分和优势特点,展现了其在大数据处理与分析领域的独特魅力。未来,随着大数据技术的不断发展和应用场景的不断拓展,数加产品家族将继续发挥其重要作用,为企业
|
7月前
|
存储 数据采集 算法
大数据平台治理——运营的角度看数仓
大数据平台治理——运营的角度看数仓
63 0