癌症研究中大数据能做的五件事

简介:

大数据医疗

1. 帮助指导使用已通过的癌症药物

虽然临床试验为医生们提供了许多药物如何发挥作用的有用信息,但是大概只有2%的癌症患者参与了临床试验。 事实上,每天都有成千上万的患者接受诊断和治疗。这意味着其实我们可以从中获得大量的重要数据,来帮助医生与病人在面对不同治疗方案及其可能的结果时做出更好的选择。

美国临床肿瘤学会ASCO发起建立一个数据库:CancerLinQ,旨在获取这些数据。它能将数据提供给医生们, 为他们提供实时的治疗建议。美国基因泰克公司(Genentech)的科学家和医生们都对能帮助ASCO开发一个完善的CancerLinQ系统感到兴奋。

2. 决定每位患者的预后治疗

了解患者的预后,可以帮助医疗团队决定对患者癌症的治疗强度,以及在肿瘤消失后需采取的措施。大数据正在借助分析从大量不同患者搜集过来的海量信息,来预测长期结果。例如,医生可以使用这些信息来决定哪些患者应该接受进一步治疗,哪些患者,由于他们的癌症不太可能复发而避免不必要的治疗。

3. 帮助药物开发发掘潜在的新靶点

对大量肿瘤DNA进行测序可以帮助研究人员了解一些与癌症相关的基因变化。科学家利用这一点帮助测试潜在的新药物,这些药物能靶定到某些与肿瘤生长相关的基因变化或驱动因子。大数据可以从临床前试验中获得,并用来帮助药物或药物组合的选择,以放到人类临床试验的研究中。

4. 解决大的公共卫生问题

流行病学研究包括癌症在内的人类疾病的起因及模式。在大数据时代之前,人们发现吸烟是导致绝大多数肺癌的因素。现在,大数据可以帮助解决癌症研究中更大的问题。新时代的流行病学借助于海量的住院记录及基因组数据,深入研究不同人群中的不同癌症。

5. 允许病人直接参与进来

癌症患者现在可以通过提供基因,医疗记录及治疗效果等数据,直接参与癌症研究。这些信息用于建立大型的研究数据库。


本文作者:大数据文摘

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
10天前
|
数据采集 人工智能 安全
|
6天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
320 164
|
5天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
324 155
|
6天前
|
编解码 人工智能 自然语言处理
⚽阿里云百炼通义万相 2.6 视频生成玩法手册
通义万相Wan 2.6是全球首个支持角色扮演的AI视频生成模型,可基于参考视频形象与音色生成多角色合拍、多镜头叙事的15秒长视频,实现声画同步、智能分镜,适用于影视创作、营销展示等场景。
383 4
|
13天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
919 7