大数据时代如何治理骚扰电话?

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

来看一组数据,据某权威机构《2014年骚扰电话年度报告》显示,2014年全国骚扰电话总数达270亿通。就骚扰电话类型来看,“响一声”电话以50%的比例位居骚扰电话数量的首位,其次为广告推销、诈骗电话、房产中介和保险理财。这些骚扰电话的源头,是愈演愈烈的个人信息泄露。

大数据时代如何治理骚扰电话?

被电话骚扰 大数据罪责难逃

大数据是个炒得很热的概念,物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。大数据这座“金矿”在改善人们的生活上立下了汗马功劳,但大数据需要采集大量的个人信息,其中就会涉及许多个人隐私。

除了办理信用卡,网上租赁房屋,网上购物,游戏注册认证之外,随着大数据的广泛应用,像手机打车软件、订餐软件、微信、各种热门app等,让我们享受便利的同时,不可避免得需要读取我们的地理位置和通讯录信息等。数据的价值在于将正确的信息在正确的时间交付到正确的人手中,否则,那就是棱镜的另一面。

关于个人信息及敏感隐私数据泄露事件是层出不穷,“棱镜计划”、“支付宝安全门事件”、“12306用户数据泄露”等一系列事件为人们敲响了大数据时代个人信息安全的警钟。引发的不仅是铺天盖地的广告推销,还给不法分子可乘之机,利用个人信息进行各种私人调查、实施非法商业竞争、实施刑事犯罪、进行身份盗窃等。拿最典型的骚扰电话来说,许多骚扰行为是无孔不入,甚至出现了伪基站,他们模仿中国移动的信号,达到盈利的目的。

大数据如何泄露个人隐私?

毋庸置疑,大数据分析是商业智能的演进,相比于传统的数据,具有数据量大、查询分析复杂、高效等特点。比如,沃尔玛每隔一小时处理超过100万客户的交易,录入量数据库估计超过2.5 PB相当于美国国会图书馆的书籍的167倍 。FACEBOOK从它的用户群获得并处理400亿张照片。解码最原始的人类基因组花费10年时间处理,如今可以在一个星期内实现。

因为个人信息数据的多种多样,大数据还会覆盖如智能终端、智能手环、物联网、位置导航等个人端产生的海量信息,这些开放、分散的、海量的数据实时接入网络,管理员很难像传统互联网管理一样逐一对其编辑和管理,进行实时跟踪保护。

同样,大数据收集缺乏针对性,容易导致广泛、不合理、过度收集个人信息数据,常常通过覆盖面很广的个人信息收集和分析后才能找出其中有价值的信息,在此过程中很难避免不触碰到一些个人隐私数据。没有价值的信息又会丢弃,这些被丢弃的信息里又难免有个人隐私数据等。

怎样治理电话骚扰?

当然,建立健全相关法律法规是第一位的。目前,世界上已有50多个国家和地区制定了保护个人信息的相关法律,我国在大数据个人信息安全方面缺乏权威化的法律规制,缺少统一监管和行业自律,我国应制定统一的个人信息保护法,对公民个人信息的采集、使用和保密等问题作出详细规定。实际上,这个工作很早就已经开始,但个人信息保护法至今还没有出台,原因在于查处难、取证难、维权难。

随着大数据的日益蓬勃发展,在可以预见的将来,个人隐私保护将仍是要解决的重要课题。如果能够将保护个人隐私信息作为大数据技术突飞猛进的另一个考量,那么相关筛选和屏蔽个人隐私信息的技术也不是难事。归根结底,没有整治的军队必然是一团散沙,只有下定决心改变,才能看到曙光。同时需要提升用户的安全保护意识,群策群力,在大数据上做到双赢。


本文作者:康斯坦丁

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
104 1
|
25天前
|
机器学习/深度学习 存储 数据采集
解锁DataWorks:一站式大数据治理神器
解锁DataWorks:一站式大数据治理神器
47 1
|
2月前
|
数据采集 分布式计算 大数据
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第27天】在数字化时代,数据治理对于确保数据资产的保值增值至关重要。本文探讨了大数据平台的搭建和数据质量管理的重要性及实践方法。大数据平台应包括数据存储、处理、分析和展示等功能,常用工具如Hadoop、Apache Spark和Flink。数据质量管理则涉及数据的准确性、一致性和完整性,通过建立数据质量评估和监控体系,确保数据分析结果的可靠性。企业应设立数据治理委员会,投资相关工具和技术,提升数据治理的效率和效果。
144 2
|
7月前
|
数据采集 监控 大数据
大数据时代的数据质量与数据治理策略
在大数据时代,高质量数据对驱动企业决策和创新至关重要。然而,数据量的爆炸式增长带来了数据质量挑战,如准确性、完整性和时效性问题。本文探讨了数据质量的定义、重要性及评估方法,并提出数据治理策略,包括建立治理体系、数据质量管理流程和生命周期管理。通过使用Apache Nifi等工具进行数据质量监控和问题修复,结合元数据管理和数据集成工具,企业可以提升数据质量,释放数据价值。数据治理需要全员参与和持续优化,以应对数据质量挑战并推动企业发展。
1827 3
|
8月前
|
存储 SQL 分布式计算
闲侃数仓优化-大数据治理和优化
闲侃数仓优化-大数据治理和优化
80 0
|
8月前
|
存储 数据采集 算法
大数据平台治理——运营的角度看数仓
大数据平台治理——运营的角度看数仓
69 0
|
7月前
|
存储 分布式计算 DataWorks
MaxCompute产品使用问题之dataworks仅支持maxcompute上面的数据治理吗
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
8月前
|
数据采集 存储 监控
大数据治理:确保数据质量和合规性
【5月更文挑战第30天】大数据治理涉及数据分类、访问控制和质量监控,以确保数据安全和合规性。企业需保护个人隐私,防止数据泄露,并遵守各地法规,如GDPR和CCPA。技术实践包括数据加密、匿名化和严格访问控制。管理策略则强调制定政策、员工培训和法律合作。全面的数据治理能保障数据质量,驱动组织的创新和价值增长。
333 0
|
8月前
|
存储 SQL 分布式计算
大数据平台治理资源成本化
大数据平台治理资源成本化
102 0
|
8月前
|
存储 监控 大数据
数据仓库(11)什么是大数据治理,数据治理的范围是哪些
什么是数据治理,数据治理包含哪些方面?大数据时代的到来,给了我们很多的机遇,也有很多的挑战。最基础的调整也是大数据的计算和管理,数据治理是一个特别重要的大数据基础,他保证着数据能否被最好的应用,保证着数据的安全,治理等。那么数据治理到底能治什么,怎么治?
178 0