构造一个和人类智能水平相当的人工智能,需要从哪方面努力?

简介:

构造一个和人类智能水平相当的人工智能,需要从哪方面努力?

每项具有学习能力的技术在一个阶段学习完以后,都会产生下一阶段的学习曲线。通过查看这条曲线,我们可以判断这个特定的结构是否达到了人类水平。

让我们详细的看回每一部分。

技能列表——所有可能的测试和任务至少有一个人能够通过。下列是这一堆技能:认识的多样性——从区分几何形状到语音识别,能循序渐进地玩游戏——从掌握下棋到掌握怎么玩Go,从制作音乐到有新的科学发现。

人与机器之间的区别是,人可以通过选择相关的课程来获得这些技能,而机器则不可以。人类不需要重新创造。课程有助于帮助获得深入学习的能力以及高效使用知识的方法。

此外,人类拥有巨大的常见能力,这些常见的能力有助于人类获得更复杂和特定的技能。比如,阅读,写作和说话的能力,这些常见能力又给出了学习任何其他主题的无限能力:构建飞机,弹钢琴,量子物理学。

技能轴列表。从这里,我们可以假设,有哪些技能是必须先获得的,而这些先获得的技能日后可以帮助在专业领域获得更专业具体的技能。有了这个原则,我们可以建立一个顺序的技能列表——从科学的角度,由最常见到最有趣的顺序来排。这些技能反映出图像应该作为人类水平的技能所存在的。

学习轴的时间决定了给定的计算或其他资源学习的时间消耗。这里出现的问题就是更高水平的技能需要更多的计算能力。因为它,学习时间变得很长。

这里有两种可能的学习曲线。曲线A的第一半(从点O到点N)在某种程度上类似于B。但是存在着一个差别——曲线B具有架构限制,并且在这个意义上与A相同,又或者不存在这个问题。第二个选项引导着我们到技术奇点的主题。

创建人性智能需要做什么?

基于这个图,有两个互补的方式来实现人类智能:

 •减少学习时间。这样的顺序技能列表必须被创建,因为只有这样,其中的每一个学会了的技能将会提高学会下一个技能的效率。这样的课程将使学习曲线增长得更快。

•通过开发来提高建筑限制。没错,这非常明显。但通过使用这个被提出的观点,我们可以衡量学习进展。以及能够测量AI的真实客观科学的发展。

因此,每个旨在创建人工智能的项目都可以在以上提出的方案下进行一些考虑。 每个项目通过命题自己的假设和视野来缩小这种训练方案的范围。当证明假说成为了新的研究的基础,人工智能的科学便出现了。

本文作者:图普科技

本文转自雷锋网禁止二次转载,原文链接

相关文章
|
1月前
|
机器学习/深度学习 人工智能 供应链
决策智能是新的人工智能平台吗?
决策智能融合数据、决策与行动,通过AI与自动化技术提升企业决策质量与效率,支持从辅助到自动化的多级决策模式,推动业务敏捷性与价值转化。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能:有多少人工,才能有多少智能?
当下AI大模型的能力,特别是Agent领域,到底离不开多少“人工”的加持?本文将结合我的实际经验,深入探讨高质量数据与有效评价体系在Agent发展中的决定性作用,并通过编码Agent、Web Agent和GUI Agent的成熟度分析,揭示AI智能体发展面临的挑战与机遇。
199 89
|
4月前
|
机器学习/深度学习 人工智能 自动驾驶
人机融合智能 | 以人为中心的人工智能伦理体系
本章探讨“以人为中心”的人工智能伦理体系,分析人工智能伦理与传统伦理学的关系、主要分支内容及核心原则。随着人工智能技术快速发展,其在推动社会进步的同时也引发了隐私、公平、责任等伦理问题。文章指出,人工智能伦理需融入传统伦理框架,并构建适应智能技术发展的新型伦理规范体系,以确保技术发展符合人类价值观和利益。
174 4
|
4月前
|
机器学习/深度学习 人工智能 算法
人机融合智能 | 以人为中心人工智能新理念
本文探讨了“以人为中心的人工智能”(HCAI)理念,强调将人的需求、价值和能力置于AI设计与开发的核心。HCAI旨在确保AI技术服务于人类,增强而非取代人类能力,避免潜在危害。文章分析了AI的双刃剑效应及其社会挑战,并提出了HCAI的设计目标与实施路径,涵盖技术、用户和伦理三大维度。通过系统化方法,HCAI可推动AI的安全与可持续发展,为国内外相关研究提供重要参考。
276 3
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
人机融合智能 | 数据与知识双驱动式人工智能
本章系统介绍了数据驱动、知识驱动及双驱动人工智能的理论与应用。数据驱动方法依赖大数据和深度学习,在图像识别、自然语言处理等领域取得突破,但面临标注成本高、可解释性差等问题。知识驱动方法通过知识表示与推理提升系统理解能力,却在泛化性和适应性上受限。为弥补单一范式的不足,数据与知识双驱动融合两者优势,致力于构建更智能、可解释且安全可靠的AI系统,兼顾伦理与隐私保护。文章还回顾了AI发展历程,从早期神经网络到当前大规模语言模型(如GPT、BERT)的技术演进,深入解析了各类机器学习与深度学习模型的核心原理与应用场景,展望未来AI发展的潜力与挑战。
223 0
|
6月前
|
数据采集 机器学习/深度学习 人工智能
数据驱动智能,智能优化数据——大数据与人工智能的双向赋能
数据驱动智能,智能优化数据——大数据与人工智能的双向赋能
438 4
|
10月前
|
机器学习/深度学习 人工智能 运维
人工智能在云计算中的运维优化:智能化的新时代
人工智能在云计算中的运维优化:智能化的新时代
927 49
|
10月前
|
机器学习/深度学习 人工智能 算法
人工智能与机器人的结合:智能化世界的未来
人工智能与机器人的结合:智能化世界的未来
1261 32
|
9月前
|
机器学习/深度学习 数据采集 人工智能
人工智能在变更管理中的应用:变革的智能化之路
人工智能在变更管理中的应用:变革的智能化之路
414 13
|
11月前
|
机器学习/深度学习 存储 人工智能
政务部门人工智能OCR智能化升级:3大技术架构与4项核心功能解析
本项目针对政务服务数字化需求,建设智能文档处理平台,利用OCR、信息抽取和深度学习技术,实现文件自动解析、分类、比对与审核,提升效率与准确性。平台强调本地部署,确保数据安全,解决低质量扫描件、复杂表格等痛点,降低人工成本与错误率,助力智慧政务发展。
358 0

热门文章

最新文章