构造一个和人类智能水平相当的人工智能,需要从哪方面努力?

简介:

构造一个和人类智能水平相当的人工智能,需要从哪方面努力?

每项具有学习能力的技术在一个阶段学习完以后,都会产生下一阶段的学习曲线。通过查看这条曲线,我们可以判断这个特定的结构是否达到了人类水平。

让我们详细的看回每一部分。

技能列表——所有可能的测试和任务至少有一个人能够通过。下列是这一堆技能:认识的多样性——从区分几何形状到语音识别,能循序渐进地玩游戏——从掌握下棋到掌握怎么玩Go,从制作音乐到有新的科学发现。

人与机器之间的区别是,人可以通过选择相关的课程来获得这些技能,而机器则不可以。人类不需要重新创造。课程有助于帮助获得深入学习的能力以及高效使用知识的方法。

此外,人类拥有巨大的常见能力,这些常见的能力有助于人类获得更复杂和特定的技能。比如,阅读,写作和说话的能力,这些常见能力又给出了学习任何其他主题的无限能力:构建飞机,弹钢琴,量子物理学。

技能轴列表。从这里,我们可以假设,有哪些技能是必须先获得的,而这些先获得的技能日后可以帮助在专业领域获得更专业具体的技能。有了这个原则,我们可以建立一个顺序的技能列表——从科学的角度,由最常见到最有趣的顺序来排。这些技能反映出图像应该作为人类水平的技能所存在的。

学习轴的时间决定了给定的计算或其他资源学习的时间消耗。这里出现的问题就是更高水平的技能需要更多的计算能力。因为它,学习时间变得很长。

这里有两种可能的学习曲线。曲线A的第一半(从点O到点N)在某种程度上类似于B。但是存在着一个差别——曲线B具有架构限制,并且在这个意义上与A相同,又或者不存在这个问题。第二个选项引导着我们到技术奇点的主题。

创建人性智能需要做什么?

基于这个图,有两个互补的方式来实现人类智能:

 •减少学习时间。这样的顺序技能列表必须被创建,因为只有这样,其中的每一个学会了的技能将会提高学会下一个技能的效率。这样的课程将使学习曲线增长得更快。

•通过开发来提高建筑限制。没错,这非常明显。但通过使用这个被提出的观点,我们可以衡量学习进展。以及能够测量AI的真实客观科学的发展。

因此,每个旨在创建人工智能的项目都可以在以上提出的方案下进行一些考虑。 每个项目通过命题自己的假设和视野来缩小这种训练方案的范围。当证明假说成为了新的研究的基础,人工智能的科学便出现了。

本文作者:图普科技

本文转自雷锋网禁止二次转载,原文链接

相关文章
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与未来教育:探索智能教学的新纪元
【10月更文挑战第16天】 在21世纪这个信息爆炸的时代,技术革新正以惊人的速度改变着我们的生活和工作方式。其中,人工智能(AI)作为引领变革的先锋力量,不仅重塑了工业、医疗、金融等多个行业的面貌,也正悄然渗透进教育领域,预示着一场关于学习与教学方式的革命。本文旨在探讨人工智能如何为未来教育带来前所未有的机遇与挑战,从个性化学习路径的定制到教育资源的优化分配,再到教师角色的转变,我们一同展望一个更加智能、高效且包容的教育新纪元。
|
14天前
|
机器学习/深度学习 人工智能 算法
人机融合智能 | 以人为中心人工智能新理念
本文探讨了“以人为中心的人工智能”(HCAI)理念,强调将人的需求、价值和能力置于AI设计与开发的核心。HCAI旨在确保AI技术服务于人类,增强而非取代人类能力,避免潜在危害。文章分析了AI的双刃剑效应及其社会挑战,并提出了HCAI的设计目标与实施路径,涵盖技术、用户和伦理三大维度。通过系统化方法,HCAI可推动AI的安全与可持续发展,为国内外相关研究提供重要参考。
70 3
|
2月前
|
数据采集 机器学习/深度学习 人工智能
数据驱动智能,智能优化数据——大数据与人工智能的双向赋能
数据驱动智能,智能优化数据——大数据与人工智能的双向赋能
195 4
|
9月前
|
传感器 数据采集 机器学习/深度学习
人工智能与环境保护:智能监测与治理的新策略
【9月更文挑战第21天】人工智能在环境保护中的应用,为智能监测与治理提供了新的策略和方法。通过实时数据采集与分析、智能预警与应急响应、精准化决策支持等技术的应用,AI正在引领一场革命性的变革。未来,随着技术的不断发展和应用场景的拓展,AI将在环境保护中发挥更加重要的作用,助力我们构建更加绿色、可持续的未来。让我们携手共进,共同迎接一个更加美好的明天。
|
5月前
|
机器学习/深度学习 数据采集 人工智能
人工智能在变更管理中的应用:变革的智能化之路
人工智能在变更管理中的应用:变革的智能化之路
268 13
|
6月前
|
机器学习/深度学习 人工智能 运维
人工智能在云计算中的运维优化:智能化的新时代
人工智能在云计算中的运维优化:智能化的新时代
681 49
|
6月前
|
机器学习/深度学习 人工智能 算法
人工智能与机器人的结合:智能化世界的未来
人工智能与机器人的结合:智能化世界的未来
905 32
|
7月前
|
人工智能 监控 物联网
深度探索人工智能与物联网的融合:构建未来智能生态系统###
在当今这个数据驱动的时代,人工智能(AI)与物联网(IoT)的深度融合正引领着一场前所未有的技术革命。本文旨在深入剖析这一融合背后的技术原理、探讨其在不同领域的应用实例及面临的挑战与机遇,为读者描绘一幅关于未来智能生态系统的宏伟蓝图。通过技术创新的视角,我们不仅揭示了AI与IoT结合的强大潜力,也展望了它们如何共同塑造一个更加高效、可持续且互联的世界。 ###
|
7月前
|
机器学习/深度学习 存储 人工智能
政务部门人工智能OCR智能化升级:3大技术架构与4项核心功能解析
本项目针对政务服务数字化需求,建设智能文档处理平台,利用OCR、信息抽取和深度学习技术,实现文件自动解析、分类、比对与审核,提升效率与准确性。平台强调本地部署,确保数据安全,解决低质量扫描件、复杂表格等痛点,降低人工成本与错误率,助力智慧政务发展。
192 0
|
8月前
|
机器学习/深度学习 移动开发 自然语言处理
基于人工智能技术的智能导诊系统源码,SpringBoot作为后端服务的框架,提供快速开发,自动配置和生产级特性
当身体不适却不知该挂哪个科室时,智能导诊系统应运而生。患者只需选择不适部位和症状,系统即可迅速推荐正确科室,避免排错队浪费时间。该系统基于SpringBoot、Redis、MyBatis Plus等技术架构,支持多渠道接入,具备自然语言理解和多输入方式,确保高效精准的导诊体验。无论是线上医疗平台还是大型医院,智能导诊系统均能有效优化就诊流程。
291 0