吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

简介:

雷锋网按:为了方便读者学习和收藏,雷锋网(公众号:雷锋网)特地把吴恩达教授在NIPS 2016大会中的PPT做为中文版,由三川和亚峰联合编译并制作。

今日,在第 30 届神经信息处理系统大会(NIPS 2016)中,百度首席科学家吴恩达教授发表演讲:《利用深度学习开发人工智能应用的基本要点(Nuts and Bolts of Building Applications using Deep Learning)》。

此外,吴恩达教授曾在今年 9 月 24/25 日也发表过同为《Nuts and Bolts of Applying Deep Learning》的演讲(1小时20分钟),以下是 YouTube 链接:

https://www.youtube.com/watch?v=F1ka6a13S9I

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

一、深度学习为何崛起

吴恩达在开场提到:深度学习为何这么火?

答案很简单:

第一是因为规模正在推动深度学习的进步。

从传统算法到小型神经网络、中型神经网络最后演化为现在的大型神经网络。

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

第二:端到端学习的崛起

从下图中的上半部分可以看出,传统端到端学习是把实体数据表达成数字数据,输出数字值作为结果。如退昂识别最后以整数标签输出为结果。

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

现在的端对端学习更为直接纯粹,如机器翻译:输入英语文本,输出法语文本;语音识别:输入音频,输出文本。但端对端学习需要大量的训练集。

吴恩达先讲述了常见的深度学习模型,然后再着分析端到端学习的具体应用。

二、主要的深度学习模型

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

  • 普通神经网络

  • 顺序模型   (1D  顺序)  RNN,  GRU,  LSTM,  CTC,  注意力模型

  • 图像模型  2D 和  3D 卷积神经网络

  • 先进/未来 技术:无监督学习(稀疏编码 ICA,  SFA,)增强学习

三、端到端学习应用案例

  • 语音识别

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

传统模型:语音→运算特征—(人工设计的 MFCC 特征)→音素识别器—(音素识别)→最终识别器→输出。

端到端学习:音频→学习算法→转录结果;在给定了足够的有标注数据(音频、转录结果)时,这种方法的效果会很好。

  • 自动驾驶

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

传统模型:摄像头图像→检测汽车+检测行人→路径规划→方向控制。

端到端学习:摄像头图像→学习算法→方向控制。

自动驾驶对安全有极高要求,因此需要极高的精确度。采取纯粹的端到端学习十分有挑战性。只在有足够(x,y)的数据,来学习足够复杂的函数的情况下,端到端学习才有效果。

四、机器学习策略

你经常有很多改进 AI 系统的主意,应该怎么做?好的战略能避免浪费数月精力做无用的事。

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

以语音识别为例,可以把原语音数据分割成:

  • 60% 训练集(训练模型)

  • 20% 开发集(开发过程中用于调参、验证等步骤的数据集)

  • 20% 测试集(测试时所使用的数据集)

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

这里面普及几个概念:

人类水平的误差与训练集的误差之间的差距是可避免的偏差,这部分误差可以通过进一步的学习/模型调整优化来避免。

训练集和开发集之间的差距称为方差,其因为跑了不同的数据从而导致误差率变化。

上述两种偏差合在一起,就是偏差-方差权衡(bias-variance trade-off)。

  • 机器学习的基本方案

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

  • 自动数据合成示例吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

  • 不同训练、测试集的分布

假设你想要为一个汽车后视镜产品,开发语音识别系统。你有 5000 小时的普通语音数据,还有 10 小时的车内数据。你怎么对数据分组呢?这是一个不恰当的方式:

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

  • 不同训练和测试集分配

更好的方式:让开发和测试集来自同样的分配机制。

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

五、机器学习新方案

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

  • 普通人类、偏差、方差分析

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

  • 人类的表现水平

当机器学习在处理某项任务上比人类表现还差时,你经常会看到最快的进步。

机器学习超越人后,很快就会靠近贝叶斯最优误差线。

可以依靠人类的直觉:(i)人类提供加标签的数据。(ii)进行错误分析,来理解人是怎么对样本正确处理的(iii)预估偏差/方差。比如,一项图像识别任务的训练误差 8%, 开发误差 10%,你应该怎么处理?

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

六、人工智能产品管理

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

新的监督DL算法的存在,意味着对使用 DL开发应用的团队合作,我们在重新思考工作流程。产品经理能帮助 AI 团队,优先进行最出成果的机器学习任务。比如,对于汽车噪音、咖啡馆的谈话声、低带宽音频、带口音的语音,你是应该提高语音效果呢,还是改善延迟,缩小二进制,还是做别的什么?

今天的人工智能能做什么呢?这里给产品经理一些启发:

如果一个普通人完成一项智力任务只需不到一秒的思考时间,我们很可能现在,或者不远的将来,用 AI 把该任务自动化。

对于我们观察到的具体的、重复性的事件(比如用户点击广告;快递花费的时间),我们可以合理地预测下一个事件的结果(用户是否点击下一个此类广告)。

  • 产品经理和研究员、工程师该如何分工

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)

七、吴恩达新书推荐

吴恩达 NIPS 2016:利用深度学习开发人工智能应用的基本要点(含唯一的中文版PPT)


本文作者:亚峰

本文转自雷锋网禁止二次转载, 原文链接
相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
2月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
91 22
|
3月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
411 55
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
185 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
3月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
236 6
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
ModelScope深度学习项目低代码开发
低代码开发平台通过丰富的预训练模型库、高度灵活的预训练模型和强大的微调训练功能,简化深度学习项目开发。以阿里魔搭为例,提供大量预训练模型,支持快速迭代与实时反馈,减少从头训练的时间和资源消耗。开发者可轻松调整模型参数,适应特定任务和数据集,提升模型性能。ModelScope平台进一步增强这些功能,提供模型搜索、体验、管理与部署、丰富的模型和数据资源、多模态任务推理及社区协作,助力高效、环保的AI开发。
192 65
|
23天前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
82 40
|
23天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
84 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
18天前
|
机器学习/深度学习 运维 资源调度
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
72 6
|
17天前
|
机器学习/深度学习 自然语言处理 监控
深入探索:深度学习在时间序列预测中的强大应用与实现
时间序列分析是数据科学和机器学习中一个重要的研究领域,广泛应用于金融市场、天气预报、能源管理、交通预测、健康监控等多个领域。时间序列数据具有顺序相关性,通常展示出时间上较强的依赖性,因此简单的传统回归模型往往不能捕捉其中复杂的动态特征。深度学习通过其非线性建模能力和层次结构的特征提取能力,能够有效地捕捉复杂的时间相关性和非线性动态变化模式,从而在时间序列分析中展现出极大的潜力。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
244 16

热门文章

最新文章