关于大数据量下Core Data的数据迁移

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

Core Data版本迁移基础


通常,在使用Core Data的iOS App上,不同版本上的数据模型变更引发的数据迁移都是由Core Data来负责完成的。
这种数据迁移模式称为Lightweight Migration(可能对于开发人员来说是lightweight),开发人员只要在添加Persistent Store时设置好对应选项,其它的就交付给Core Data来做了:



从命名上可以看出这两个选项分别代表:自动迁移Persistent Store,以及自动创建Mapping Model。

自动迁移Persistent Store很好理解,就是将数据从一个物理文件迁移到另一个物理文件,通常是因为物理文件结构发生了变化。
自动创建Mapping Model是为迁移Persistent Store服务的,所以当自动迁移Persistent Store选项NSMigratePersistentStoreAutomaticallyOption为@(YES)、且找不到Mapping Model时,coordinator会尝试创建一份。
其它初始化场景可以参考Initiating the Migration Process

既然是尝试创建,便有成功和失败的不同结果。只有当数据模型的变更属于某些基本变化时,才能够成功地自动创建出一份Mapping Model,比如:新增一个字段;删除一个字段;必填字段转换成可选字段;可选字段转换成必填字段,同时提供了默认值等等。

因为可能创建Mapping Model失败,所以考虑容错性的话,可以事先判断下能否成功推断出一份Mapping Model:



利用如上类方法,如果无法创建一份Mapping Model,则会返回nil,并带有具体原因。

以上都建立在Core Data能够自动找到sourceModel和destinationModel的基础上,如果无法找到对应的两份Model,则需要开发人员手工创建NSMigrationManager来进行数据迁移(可以参考Use a Migration Manager if Models Cannot Be Found Automatically)。

版本迁移过程


那么,数据迁移的过程是如何进行的?

首先,发生数据迁移需要三个基本条件:可以打开既有persistent store的sourceModel,新的数据模型destinationModel,以及这两者之间的映射关系Mapping Model。

利用这三样,当调用如下代码时(addPersistentStore):



Core Data创建了两个stack(分别为source stack和destination stack,可以参考Core Data stack),然后遍历Mapping Model里每个entity的映射关系,做以下三件事情:
     1. 基于source stack,Core Data先获取现有数据,然后在destination stack里创建当前entity的实例,只填充属性,不建立关系;
     2. 重新创建entity之间的关系;
     3. 验证数据的完整性和一致性,然后保存。

考虑到第二步是重新建立entity之间的关系,那么应该是在第一步就把所有entity的对象都创建好了,并且保留在内存中,为第二步服务(事实上也是如此)。

完成第二步后,所有数据还是维持在内存中(可能还有两份,因为有两个stack),在完成数据验证后才真正保存。

这样的话,会容易导致内存占用过多,因为Core Data在这个迁移过程中也没有一种机制清理响应的context。所以在数据量较多时,App可能会遇到在数据迁移过程因为内存紧张而被系统干掉。
针对这种情况,我们可以自定义迁移过程。

自定义数据迁移(解决内存问题)


自定义数据迁移的过程通畅分为三步:
第一步是判断是否需要进行数据迁移:



第二步是创建一个Migration Manager对象:



第三步是真正发生数据迁移:



上面三幅图所展示的代码在内存使用量上跟lightweight migration也没什么区别,无法解决内存峰值过高的问题。

虽然Core Data专家Marcus S. Zarra比较倾向坚持使用lightweight migration,不过对于上述内存占用过多的问题,Apple官方推荐使用Multiple Passes来解决。

关于Multiple Passes,官方文档的说明很简明扼要,如有需要,可以参考Stackoverflow上的这么一篇帖子

用我的话往简单里说就是对数据模型进行划分,把一份Mapping Model拆分成多份,然后分成多次迁移,从而降低内存峰值。这需要对数据库进行全盘的考虑(甚至可能需要变更部分设计),然后通过合理的划分把相关联的Entity放在一份Mapping Model里面(因为要建立关联)。

新的问题


采用上述方案来解决数据迁移过程中内存峰值的问题,我们仍然需要关注迁移所耗费的时间、内存,从而能够在数据上验证方案的有效性,并且在用户交互方面进行一些必要的更改(总不能让用户傻傻地在那边等数据迁移吧)。

虽然可以解决内存峰值的问题,但也引进了其它问题。

1. 需要对数据模型进行划分(以及变更),存在一定的工作量和风险;
2. 需要手工建立多份Mapping Model;
3. 需要手工编写Multiple Passes迁移代码;
4. 需要在每个版本变迁中都再次创建新的Mapping Model,且在跨版本迁移过程存在着其它问题;
5. 数据模型版本多起来,就面临着跨版本迁移的问题,是要为每个历史版本创建到最新模型的Mapping Model,还是只维护最近两个版本的Mapping Model(更早的版本通过相邻版本的Mapping Model依次迁移过来,比较耗时)?
6. 对数据模型重新划分后,无关的Entity简单变更也会引起整个store和model的不兼容,需要迁移,那么是否考虑分库?
7. 这么大的动作服务的用户数是很少的(只有少数用户会遇到,或者是很少),但却是比较资深的(因为消息记录多),疼。。。
8. 这无法解决单个Entity数据量过大的问题,针对这种场景,只能自己手工编码进行小批量的数据迁移;

Jason

2014.01.02 @ Hangzhou

Evernote

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
6月前
|
分布式计算 关系型数据库 数据库连接
MaxCompute数据问题之数据迁移如何解决
MaxCompute数据包含存储在MaxCompute服务中的表、分区以及其他数据结构;本合集将提供MaxCompute数据的管理和优化指南,以及数据操作中的常见问题和解决策略。
101 0
|
6月前
|
机器学习/深度学习 SQL 分布式计算
MaxCompute产品使用合集之大数据计算MaxCompute如果要把A的数据迁移到B,操作步骤是什么
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
4月前
|
分布式计算 DataWorks 调度
MaxCompute产品使用合集之如何将数据迁移到CDH Hive
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
6月前
|
分布式计算 DataWorks 大数据
MaxCompute操作报错合集之在使用 MaxCompute 的 MMA(Multi-Modal Analytics)进行跨 Region 数据迁移时,在配置数据源时遇到错误,如何解决
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
|
6月前
|
SQL 分布式计算 大数据
大数据技术之集群数据迁移
大数据技术之集群数据迁移
98 0
|
SQL 数据采集 分布式计算
大数据数据采集的数据迁移(同步/传输)的Sqoop之基本命令和使用的导入/导出数据
在大数据领域,数据迁移(同步/传输)也是非常重要的一环。Sqoop作为一个开源的数据迁移工具,可以帮助我们轻松地实现关系型数据库与Hadoop之间的数据迁移。本文将会对Sqoop的基本命令和使用进行详细介绍。
388 1
|
SQL 分布式计算 Oracle
大数据数据采集的数据迁移(同步/传输)的Sqoop之概念
在大数据领域,数据迁移(同步/传输)也是非常重要的一环。Sqoop作为一个开源的数据迁移工具,可以帮助我们轻松地实现关系型数据库与Hadoop之间的数据迁移。本文将会对Sqoop进行详细介绍。
571 1
|
数据采集 关系型数据库 MySQL
大数据数据采集的数据迁移(同步/传输)的Sqoop之DataX
在大数据领域中,数据迁移是一个非常重要的任务。而Sqoop是一款流行且实用的数据迁移工具,但是它对于某些特定场景的数据迁移并不太方便。为了解决这个问题,阿里巴巴集团开发了一款开源的数据集成工具DataX,提供了更多的数据迁移方式和功能。本文将介绍DataX的基本原理和使用方法,希望能够为大家提供一些参考和帮助。
488 0
|
存储 数据采集 分布式计算
大数据数据采集的数据迁移(同步/传输)的Sqoop之数据传输实战
在大数据领域,数据迁移(同步/传输)也是非常重要的一环。Sqoop作为一个开源的数据迁移工具,可以帮助我们轻松地实现关系型数据库与Hadoop之间的数据迁移。本文将介绍如何使用Sqoop进行数据传输实战。
661 0
|
存储 数据采集 SQL
大数据数据采集的数据迁移(同步/传输)的Sqoop之基本命令和使用的job作业
在大数据领域中,Sqoop是一款非常流行的数据迁移工具。它可以将关系型数据库中的数据快速地移动到Hadoop生态系统中,方便我们进行更深入的分析和处理。本文将介绍Sqoop的基本命令及如何使用Sqoop来创建和运行job作业,希望能够为大家提供一些参考和帮助。
176 0
下一篇
无影云桌面