详解 DNN 在声学应用中的模型训练

简介:

本文通过简单kaldi源码,分析DNN训练声学模型时神经网络的输入与输出。在进行DNN训练之前需要用到之前GMM-HMM训练的模型,以训练好的mono模型为例,对模型进行维特比alignement(对齐),该部分主要完成了每个语音文件的帧到 transition-id 的映射

不妨查看对齐后的结果:


$ copy-int-vector "ark:gunzip -c ali.1.gz|" ark,t:- | head -n 1
speaker001_00003 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 15 15 15 18 890 889 889 889 889 889 889 892 894 893 893 893 86 88 87 90 89 89 89 89 89 89 89 89 89 89 89 89 89 89 194 193 196 195 195 198 197 386 385 385 385 385 385 385 385 385 388 387 387 390 902 901 901 904 903 906 905 905 905 905 905 905 905 905 905 905 905 914 913 913 916 918 917 917 917 917 917 917 752 751 751 751 751 751 754 753 753 753 753 753 753 753 753 756 755 755 926 925 928 927 927 927 927 927 927 927 930 929 929 929 929 929 929 929 929 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 18


对于一个训练语音文件speaker001_00003,后面的每一个数字标示一个transition-id,同时每个数字对应一个特征向量,对应的向量可以 copy-matrix 查看,可参考特征提取相关内容,链接如下:

http://t.cn/RX2n4Dx

同样查看 transition-id:


$ show-transitions phones.txt final.mdl

Transition-state 1: phone = sil hmm-state = 0 pdf = 0
 Transition-id = 1 p = 0.966816 [self-loop]
 Transition-id = 2 p = 0.01 [0 -> 1]
 Transition-id = 3 p = 0.01 [0 -> 2]
 Transition-id = 4 p = 0.013189 [0 -> 3]
Transition-state 2: phone = sil hmm-state = 1 pdf = 1
 Transition-id = 5 p = 0.970016 [self-loop]
 Transition-id = 6 p = 0.01 [1 -> 2]
 Transition-id = 7 p = 0.01 [1 -> 3]
 Transition-id = 8 p = 0.01 [1 -> 4]
Transition-state 3: phone = sil hmm-state = 2 pdf = 2
 Transition-id = 9 p = 0.01 [2 -> 1]
 Transition-id = 10 p = 0.968144 [self-loop]
 Transition-id = 11 p = 0.01 [2 -> 3]
 Transition-id = 12 p = 0.0118632 [2 -> 4]
Transition-state 4: phone = sil hmm-state = 3 pdf = 3
 Transition-id = 13 p = 0.01 [3 -> 1]
 Transition-id = 14 p = 0.01 [3 -> 2]
 Transition-id = 15 p = 0.932347 [self-loop]
 Transition-id = 16 p = 0.0476583 [3 -> 4]
Transition-state 5: phone = sil hmm-state = 4 pdf = 4
 Transition-id = 17 p = 0.923332 [self-loop]
 Transition-id = 18 p = 0.0766682 [4 -> 5]
Transition-state 6: phone = a1 hmm-state = 0 pdf = 5
 Transition-id = 19 p = 0.889764 [self-loop]
 Transition-id = 20 p = 0.110236 [0 -> 1]
...


唯一的Transition-state对应唯一的pdf,其下又包括多个 Transition-id,

接下来看神经网络的输入与输出到底是什么。这里以steps/nnet为例。追溯脚本到steps/nnet/train.sh,找到相关的命令:


...
 labels_tr="ark:ali-to-pdf $alidir/final.mdl \"ark:gunzip -c $alidir/ali.*.gz |\" ark:- | ali-to-post ark:- ark:- |"

...
feats_tr="ark:copy-feats scp:$dir/train.scp ark:- |"
...
# input-dim,
  get_dim_from=$feature_transform
  num_fea=$(feat-to-dim "$feats_tr nnet-forward \"$get_dim_from\" ark:- ark:- |" -)
# output-dim,
  num_tgt=$(hmm-info --print-args=false $alidir/final.mdl | grep pdfs | awk '{ print $NF }')
...

dnn)
 utils/nnet/make_nnet_proto.py $proto_opts \
   ${bn_dim:+ --bottleneck-dim=$bn_dim} \
   $num_fea $num_tgt $hid_layers $hid_dim >$nnet_proto
  ;;


从上面关键的几个神经网络的训练的准备阶段可以看出,神经网络的输入很清楚是变换后的特征向量(feats_tr),输出是labels_tr,下面单独运行上面的命令,来查看神经网络的输出(target)是什么。labels_tr的生成分两步:

  • ali-to-pdf: 将上面对齐文件中的transition-id转化为对应的pdf-id;

  • ali-to-post: 根据得到的pdf-id,生成[pdf, post]对,即pdf与其对应的后验概率。


$ ali-to-pdf final.mdl "ark:gunzip -c ali.1.gz|" ark,t:- | head -n 1
 speaker001_00003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 4 440 440 440 440 440 440 440 441 442 442 442 442 38 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 92 92 93 93 93 94 94 188 188 188 188 188 188 188 188 188 189 189 189 190 446 446 446 447 447 448 448 448 448 448 448 448 448 448 448 448 448 452 452 452 453 454 454 454 454 454 454 454 371 371 371 371 371 371 372 372 372 372 372 372 372 372 372 373 373 373 458 458 459 459 459 459 459 459 459 459 460 460 460 460 460 460 460 460 460 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4


观察前两帧,结合文章一开始,transition-id 分别为4和1,而对应的pdf均为0。对该结果再进行ali-to-post:


$ ali-to-pdf final.mdl "ark:gunzip -c ali.1.gz|" ark,t:- | head -n 1 | ali-to-post ark,t:- ark,t:-
 speaker001_00003 [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] ...... [ 3 1 ] [ 3 1 ] [ 3 1 ] [ 3 1 ] [ 4 1 ] [ 440 1 ] [ 440 1 ] [ 440 1 ] [ 440 1 ] [ 440 1 ] [ 440 1 ] [ 440 1 ] [ 441 1 ] [ 442 1 ] [ 442 1 ] [ 442 1 ] [ 442 1 ] [ 38 1 ] [ 39 1 ] [ 39 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 40 1 ] [ 92 1 ] [ 92 1 ]...... [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 0 1 ] [ 3 1 ] [ 4 1 ]


得到pdf-id以及相应的后验概率,这里均为1。

由此得到了训练数据以及对应的target label。进一步来看神经网络的输入与输出的维度,网络结构被utils/nnet/make_nnet_proto.py写到nnet_proto文件中,该Python脚本的两个重要参数 num_fea和num_tgt分别为神经网络的输入与输出的维度。其中num_fea是由feat-to-dim获得:


$ feat-to-dim scp:../tri4b_dnn/train.scp ark,t:- | grep speaker001_00003 
speaker001_00003 40


这里为fbank特征,维度为40,而在真正作为神经网络输入时,进一步对特征向量进行的变换,从源码steps/nnet/train.sh也可以看到splice参数(默认值为5),指定了对特征向量的变换:取对应帧前后5帧,拼成一个11帧组成的大向量(维度为440)。该部分特征变换的拓扑也被保存到final.feature_transform:


$ more final.feature_transform 
<Nnet> 
<Splice> 440 40 
[ -5 -4 -3 -2 -1 0 1 2 3 4 5 ]
<!EndOfComponent> 
...


后面在进行神经网络的训练时会使用该拓扑对特征向量进行变换,最终的神经网络输入维度为440。

而num_tgt的维度则是通过hmm-info获得:


$ hmm-info final.mdl
number of phones 218
number of pdfs 1026
number of transition-ids 2834
number of transition-states 1413

$ hmm-info final.mdl |  grep pdfs | awk '{ print $NF }'
1026


因此,看到神经网络的输出维度为1026,这时查看nnet_proto:


<AffineTransform> <InputDim> 440 <OutputDim> 1024 <BiasMean> -2.000000 <BiasRange> 4.000000 <ParamStddev> 0.037344 <MaxNorm> 0.000000
<Sigmoid> <InputDim> 1024 <OutputDim> 1024
<AffineTransform> <InputDim> 1024 <OutputDim> 1024 <BiasMean> -2.000000 <BiasRange> 4.000000 <ParamStddev> 0.109375 <MaxNorm> 0.000000
<Sigmoid> <InputDim> 1024 <OutputDim> 1024
<AffineTransform> <InputDim> 1024 <OutputDim> 1024 <BiasMean> -2.000000 <BiasRange> 4.000000 <ParamStddev> 0.109375 <MaxNorm> 0.000000
<Sigmoid> <InputDim> 1024 <OutputDim> 1024
<AffineTransform> <InputDim> 1024 <OutputDim> 1024 <BiasMean> -2.000000 <BiasRange> 4.000000 <ParamStddev> 0.109375 <MaxNorm> 0.000000
<Sigmoid> <InputDim> 1024 <OutputDim> 1024
<AffineTransform> <InputDim> 1024 <OutputDim> 1026 <BiasMean> 0.000000 <BiasRange> 0.000000 <ParamStddev> 0.109322 <LearnRateCoef> 1.000000 <BiasLearnRateCoef> 0.100000
<Softmax> <InputDim> 1026 <OutputDim> 1026


这里可以看到神经网络的输入维度有40变为440,输出为pdf的个数(对应HMM状态的个数)。

如果继续追查代码,最后可以找到单次神经网络的训练实现,kaldi/src/nnetbin/nnet-train-frmshuff.cc:


Perform one iteration (epoch) of Neural Network training with mini-batch Stochastic Gradient Descent. The training targets are usually pdf-posteriors, prepared by ali-to-post.


继续分析代码,可以看到几个关键步骤:

  • 解析训练参数,配置网络

  • 读取特征向量和target label,输入为Matrix< BaseFloat >类型,输出为Posterior类型,即<pdf-id, posterior>对。


// get feature / target pair,
Matrix<BaseFloat> mat = feature_reader.Value();
Posterior targets = targets_reader.Value(utt);


  • 随机打乱训练数据,作为神经网络输入与期望输出:


const CuMatrixBase<BaseFloat>& nnet_in = feature_randomizer.Value();
const Posterior& nnet_tgt = targets_randomizer.Value();
const Vector<BaseFloat>& frm_weights = weights_randomizer.Value();


  • 前向传播,计算估计值nnet_out


// forward pass,
nnet.Propagate(nnet_in, &nnet_out);


  • 计算cost,这里支持交叉熵和平方差和multitask。结果为obj_diff


// evaluate objective function we've chosen,
if (objective_function == "xent") {
 // gradients re-scaled by weights in Eval,
 xent.Eval(frm_weights, nnet_out, nnet_tgt, &obj_diff);
} else if (objective_function == "mse") {
 // gradients re-scaled by weights in Eval,
 mse.Eval(frm_weights, nnet_out, nnet_tgt, &obj_diff);
}
...


  • 根据误差反向传播,更新参数


if (!crossvalidate) {
 // back-propagate, and do the update,
 nnet.Backpropagate(obj_diff, NULL);
}


  • 完成一次参数更新,继续迭代。


total_frames += nnet_in.NumRows(),

 accepting: the loss was better, or we had fixed learn-rate, or we had fixed epoch-number



最终由调用该部分代码的/steps/nnet/train_scheduler.sh指定最大迭代次数max_iters或accept训练的模型,


 accepting: the loss was better, or we had fixed learn-rate, or we had fixed epoch-number


小结

在进行DNN训练前:

  • 训练GMM-HMM模型,聚类,并得到音素(或状态)的后验。

  • 对语音数据进行对齐,这里得到语音文件按时间顺序transition-id到帧特征向量的对应。

  • 生成< pdf-id, posterior > 对作为训练目标target

  • 语音文件特征向量进行变换,这里取前后5帧,拼成一个11帧维度更高的特征向量,作为神经网络输入。

  • 神经网络输入变换后的特征向量,通过前向传播,经Softmax层,得到该帧特征对应每个pdf的概率预测值。

  • 对每个pdf根据< pdf-id, posterior >查到目标后验概率,与预测值求误差

  • 反向传播更新参数。

  • 不断迭代,直到达到最大训练次数,或模型经过cross validation得到较低的误差(loss)停止训练。

解码时,用训练好的DNN-HMM模型,输入帧的特征向量,得到该帧为每个状态(对应pdf)的概率。

详解 DNN 在声学应用中的模型训练

其中 x_t 对应t时刻的观测值(输入),q_t=s_i 即表示t时刻的状态为 s_i。p(x_t) 为该观测值出现概率,对结果影响不大。p(s_i) 为 s_i 出现的先验概率,可以从语料库中统计得到。最终得到了与GMM相同的目的:HMM状态到观测帧特征向量的输出概率。就有了下面的示意图:

详解 DNN 在声学应用中的模型训练





====================================分割线================================


本文作者:AI研习社

本文转自雷锋网禁止二次转载,原文链接

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 大数据
基于联邦学习的数据隐私保护机制在智能模型训练中的应用
【8月更文第15天】随着大数据和人工智能的发展,数据隐私保护成为了亟待解决的问题。传统的集中式机器学习方法需要将数据收集到一个中心服务器进行处理,这不仅增加了数据泄露的风险,还可能触犯相关的法律法规。联邦学习(Federated Learning, FL)作为一种新兴的分布式机器学习框架,允许终端设备直接在本地数据上训练模型,并仅将更新后的模型参数发送给中心服务器汇总,从而在不暴露原始数据的情况下实现模型训练。
61 0
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深度剖析深度神经网络(DNN):原理、实现与应用
本文详细介绍了深度神经网络(DNN)的基本原理、核心算法及其具体操作步骤。DNN作为一种重要的人工智能工具,通过多层次的特征学习和权重调节,实现了复杂任务的高效解决。文章通过理论讲解与代码演示相结合的方式,帮助读者理解DNN的工作机制及实际应用。
|
7天前
|
机器学习/深度学习 人工智能 算法
探索人工智能:机器学习的奥秘与应用
本文深入浅出地探讨了人工智能领域中的核心技术——机器学习,揭示了其背后的原理和广泛的实际应用。通过浅显易懂的语言和生动的例子,本文旨在为非专业读者打开一扇了解并利用机器学习的大门,同时激发对这一前沿技术的兴趣和思考。
21 1
|
9天前
|
机器学习/深度学习 人工智能 搜索推荐
如何让你的Uno Platform应用秒变AI大神?从零开始,轻松集成机器学习功能,让应用智能起来,用户惊呼太神奇!
【9月更文挑战第8天】随着技术的发展,人工智能与机器学习已融入日常生活,特别是在移动应用开发中。Uno Platform 是一个强大的框架,支持使用 C# 和 XAML 开发跨平台应用(涵盖 Windows、macOS、iOS、Android 和 Web)。本文探讨如何在 Uno Platform 中集成机器学习功能,通过示例代码展示从模型选择、训练到应用集成的全过程,并介绍如何利用 Onnx Runtime 等库实现在 Uno 平台上的模型运行,最终提升应用智能化水平和用户体验。
23 1
|
20天前
|
机器学习/深度学习 缓存 运维
智能化运维:机器学习在IT管理中的革命性应用
【8月更文挑战第28天】 随着技术的飞速发展,传统的IT运维方式已不能满足现代企业的需求。智能化运维,通过整合机器学习技术,正在重塑我们对IT基础设施的管理方法。本文将探讨智能化运维的概念、实施步骤及其带来的变革,同时分享一些成功案例,以期为读者提供一种全新的视角和思考路径。
45 6
|
17天前
|
机器学习/深度学习 存储 前端开发
实战揭秘:如何借助TensorFlow.js的强大力量,轻松将高效能的机器学习模型无缝集成到Web浏览器中,从而打造智能化的前端应用并优化用户体验
【8月更文挑战第31天】将机器学习模型集成到Web应用中,可让用户在浏览器内体验智能化功能。TensorFlow.js作为在客户端浏览器中运行的库,提供了强大支持。本文通过问答形式详细介绍如何使用TensorFlow.js将机器学习模型带入Web浏览器,并通过具体示例代码展示最佳实践。首先,需在HTML文件中引入TensorFlow.js库;接着,可通过加载预训练模型如MobileNet实现图像分类;然后,编写代码处理图像识别并显示结果;此外,还介绍了如何训练自定义模型及优化模型性能的方法,包括模型量化、剪枝和压缩等。
25 1
|
18天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习在金融欺诈检测中的应用
【8月更文挑战第30天】 随着金融科技的迅猛发展,机器学习技术在保障交易安全和打击金融欺诈中扮演着越来越重要的角色。本文将深入探讨机器学习模型在识别和预防金融欺诈方面的应用,并分析其优势与面临的挑战。通过对比传统方法,我们突出了机器学习在处理大数据、提高检测速度和精度方面的独特价值。同时,文中还将介绍几种常用的算法和模型,以及它们在实际场景中的运用情况。最后,本文提出了未来发展趋势和需要解决的关键问题。
|
24天前
|
监控 数据安全/隐私保护 异构计算
借助PAI-EAS一键部署ChatGLM,并应用LangChain集成外部数据
【8月更文挑战第8天】借助PAI-EAS一键部署ChatGLM,并应用LangChain集成外部数据
51 1
|
25天前
|
机器学习/深度学习 算法 搜索推荐
探索机器学习在文本分析中的应用
【8月更文挑战第23天】本文旨在探讨机器学习技术在文本分析领域的应用,并解释如何通过这些技术提取有价值的信息。我们将讨论从简单的词频统计到复杂的情感分析的各种方法。文章将不展示代码示例,而是以通俗易懂的语言解释核心概念和步骤,帮助读者理解机器学习如何改变我们处理文本数据的方式。
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
探索机器学习在自然语言处理中的应用
【8月更文挑战第22天】本文将深入探讨机器学习技术如何革新自然语言处理领域,从基础概念到高级应用,揭示其背后的原理和未来趋势。通过分析机器学习模型如何处理、理解和生成人类语言,我们将展示这一技术如何塑造我们的沟通方式,并讨论它带来的挑战与机遇。