《Linux高性能服务器编程》——1.3 分用

简介: 本节书摘来自华章计算机《Linux高性能服务器编程》一书中的第1章,第1.3节,作者 游双,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

1.3 分用

当帧到达目的主机时,将沿着协议栈自底向上依次传递。各层协议依次处理帧中本层负责的头部数据,以获取所需的信息,并最终将处理后的帧交给目标应用程序。这个过程称为分用(demultiplexing)。分用是依靠头部信息中的类型字段实现的。标准文档RFC 1700定义了所有标识上层协议的类型字段以及每个上层协议对应的数值。图1-7显示了以太网帧的分用过程。

image

因为IP协议、ARP协议和RARP协议都使用帧传输数据,所以帧的头部需要提供某个字段(具体情况取决于帧的类型)来区分它们。以以太网帧为例,它使用2字节的类型字段来标识上层协议(见图1-6)。如果主机接收到的以太网帧类型字段的值为0x800,则帧的数据部分为IP数据报(见图1-4),以太网驱动程序就将帧交付给IP模块;若类型字段的值为0x806,则帧的数据部分为ARP请求或应答报文,以太网驱动程序就将帧交付给ARP模块;若类型字段的值为0x835,则帧的数据部分为RARP请求或应答报文,以太网驱动程序就将帧交付给RARP模块。

同样,因为ICMP协议、TCP协议和UDP协议都使用IP协议,所以IP数据报的头部采用16位的协议(protocol)字段来区分它们。

TCP报文段和UDP数据报则通过其头部中的16位的端口号(port number)字段来区分上层应用程序。比如DNS协议对应的端口号是53,HTTP协议(Hyper-Text Transfer Protocol,超文本传送协议)对应的端口号是80。所有知名应用层协议使用的端口号都可在/etc/services文件中找到。

帧通过上述分用步骤后,最终将封装前的原始数据送至目标服务(图1-7中的ARP服务、RARP服务、ICMP服务或者应用程序)。这样,在顶层目标服务看来,封装和分用似乎没有发生过。

相关文章
|
1月前
|
算法 Linux C++
【Linux系统编程】解析获取和设置文件信息与权限的Linux系统调用
【Linux系统编程】解析获取和设置文件信息与权限的Linux系统调用
29 0
|
1月前
|
算法 Linux C++
【Linux系统编程】深入解析Linux中read函数的错误场景
【Linux系统编程】深入解析Linux中read函数的错误场景
205 0
|
1月前
|
Linux API C语言
【Linux系统编程】深入理解Linux 组ID和附属组ID的查询与设置
【Linux系统编程】深入理解Linux 组ID和附属组ID的查询与设置
34 0
【Linux系统编程】深入理解Linux 组ID和附属组ID的查询与设置
|
1月前
|
Linux 数据处理 C++
Linux系统编程 C/C++ 以及Qt 中的零拷贝技术: 从底层原理到高级应用(一)
Linux系统编程 C/C++ 以及Qt 中的零拷贝技术: 从底层原理到高级应用
77 0
|
1月前
|
存储 Linux 测试技术
无效数据处理之道:Linux系统编程C/C++实践探索(三)
无效数据处理之道:Linux系统编程C/C++实践探索
17 0
|
1月前
|
存储 测试技术 Linux
无效数据处理之道:Linux系统编程C/C++实践探索(二)
无效数据处理之道:Linux系统编程C/C++实践探索
31 0
|
1月前
|
安全 Linux 测试技术
无效数据处理之道:Linux系统编程C/C++实践探索(一)
无效数据处理之道:Linux系统编程C/C++实践探索
70 0
|
1月前
|
存储 Linux 编译器
Linux C/C++ 编程 内存管理之道:探寻编程世界中的思维乐趣
Linux C/C++ 编程 内存管理之道:探寻编程世界中的思维乐趣
50 0
|
1月前
|
存储 Linux API
Linux系统编程 C/C++ 以及Qt 中的零拷贝技术: 从底层原理到高级应用(三)
Linux系统编程 C/C++ 以及Qt 中的零拷贝技术: 从底层原理到高级应用
31 1
|
1月前
|
消息中间件 Linux 数据处理
Linux系统编程 C/C++ 以及Qt 中的零拷贝技术: 从底层原理到高级应用(二)
Linux系统编程 C/C++ 以及Qt 中的零拷贝技术: 从底层原理到高级应用
32 1