为什么标准化要用均值0和方差1?

简介: 标准化将均值设为0,使数据居中于原点,提升梯度下降收敛速度;方差设为1,则统一各特征量纲,避免数值大的特征主导模型。二者协同确保算法训练更高效、公平。


为什么标准化要把均值设为0、方差设为1?

先说均值。均值就是平均数,所有观测值加起来除以个数。

μ是均值,n是数据点总数,xᵢ是每个数据点,所以均值就是数据的重心位置。比如均值是20,那20就是平衡点。这不是说所有点到20的距离相等而是说两边的"重量"刚好在20这个位置抵消掉。

而方差衡量的是数据有多分散,定义是每个值与均值偏差的平方的平均值。

n是数据点总数,xᵢ是每个数据点,μ是均值。

那均值为0有什么用?

可以把数据想象成坐标系里的一团“点云”。每个值减去均值(x — μ)之后,整团云就被平移到了原点位置。数据不再飘在某个角落而是以原点为中心分布。

这对很多机器学习算法都有好处,尤其是用梯度下降的时候。数据居中之后优化过程更平衡、收敛也更快。因为特征要是一开始就偏离原点很远,训练起来会麻烦不少。

那方差为1呢?

这是为了防止某个特征"欺负"其他特征。

举个例子:年龄和薪资两个特征,年龄范围10-70,薪资范围10,000-70,000。直接喂给模型的话,模型会觉得薪资比年龄重要1000倍(数字大嘛)。但这两个特征本来是独立的,凭什么薪资就更重要?

所以标准化就是除以标准差,让所有特征的方差都变成1。这样年龄和薪资就在同一个量级上了,变化幅度差不多。年龄有个小波动,不会因为薪资数字大就被模型无视掉。

可视化效果:

标准化之前,特征1(红色,小尺度)和特征2(蓝色,大尺度)放一起,红色那条几乎看不见。标准化之后,两个特征尺度一致,都能清晰显示出来。模型终于可以公平对待它们了。

什么时候需要标准化?逻辑回归、神经网络、KNN这类用梯度下降的算法,标准化影响最大。

总结一下:

均值为0让数据居中,方差为1让特征尺度统一。两者配合,算法学得更快,也不会偏心某个特征。至于什么时候该用标准化、什么时候该用MinMaxScaler,老实说我也还在摸索。

https://avoid.overfit.cn/post/957b1b35bc1047e185dab369ae8d84ed

作者:vaishnavi

目录
相关文章
|
10天前
|
数据采集 人工智能 IDE
告别碎片化日志:一套方案采集所有主流 AI 编程工具
本文介绍了一套基于MCP架构的轻量化、多AI工具代码采集方案,支持CLI、IDE等多类工具,实现用户无感、可扩展的数据采集,已对接Aone日志平台,助力AI代码采纳率分析与研发效能提升。
300 37
告别碎片化日志:一套方案采集所有主流 AI 编程工具
|
17天前
|
SQL 人工智能 分布式计算
从工单、文档到结构化知识库:一套可复用的 Agent 知识采集方案
我们构建了一套“自动提取 → 智能泛化 → 增量更新 → 向量化同步”的全链路自动化 pipeline,将 Agent 知识库建设中的收集、提质与维护难题转化为简单易用的 Python 工具,让知识高效、持续、低门槛地赋能智能体。
229 36
|
10天前
|
存储 缓存 数据建模
StarRocks + Paimon: 构建 Lakehouse Native 数据引擎
12月10日,Streaming Lakehouse Meetup Online EP.2重磅回归,聚焦StarRocks与Apache Paimon深度集成,探讨Lakehouse Native数据引擎的构建。活动涵盖架构统一、多源联邦分析、性能优化及可观测性提升,助力企业打造高效实时湖仓一体平台。
194 35
|
11天前
|
人工智能 运维 监控
进阶指南:BrowserUse + AgentRun Sandbox 最佳实践
本文将深入讲解 BrowserUse 框架集成、提供类 Manus Agent 的代码示例、Sandbox 高级生命周期管理、性能优化与生产部署策略。涵盖连接池设计、安全控制、可观测性建设及成本优化方案,助力构建高效、稳定、可扩展的 AI 浏览器自动化系统。
275 30
|
12天前
|
人工智能 弹性计算 运维
探秘 AgentRun丨为什么应该把 LangChain 等框架部署到函数计算 AgentRun
阿里云函数计算 AgentRun,专为 AI Agent 打造的一站式 Serverless 基础设施。无缝集成 LangChain、AgentScope 等主流框架,零代码改造即可享受弹性伸缩、企业级沙箱、模型高可用与全链路可观测能力,助力 Agent 高效、安全、低成本地落地生产。
212 36
|
12天前
|
数据采集 监控 数据可视化
快速上手:LangChain + AgentRun 浏览器沙箱极简集成指南
AgentRun Browser Sandbox 是基于云原生函数计算的浏览器沙箱服务,为 AI Agent 提供安全、免运维的浏览器环境。通过 Serverless 架构与 CDP 协议支持,实现网页抓取、自动化操作等能力,并结合 VNC 实时可视化,助力大模型“上网”交互。
280 33
|
1天前
|
人工智能 自然语言处理 C++
写小说时,Claude 4.0 和 4.5 的差别在哪里?
本文对比Claude Sonnet 4.0与4.5在小说创作中的实际表现,聚焦人物一致性、剧情连续性与长期可控性。基于Anthropic官方能力说明及多轮实测,指出4.5在多阶段续写、逻辑连贯性与风格稳定性上显著提升,更适配中长篇连载场景,助力AI写作从“能写”迈向“能长期写”。(239字)
|
3月前
|
人工智能 小程序 前端开发
一个小程序轻量AR体感游戏,开发实现解决方案
针对青少年运动兴趣不足问题,AR体感游戏凭借沉浸式互动体验脱颖而出。结合小程序“AI运动识别”插件与WebGL渲染技术,可实现无需外设的轻量化AR健身游戏,如跳糕、切水果等,兼具趣味性与锻炼效果,适用于儿童健身及职工团建,即开即玩,低门槛高参与。
|
9月前
|
人工智能 自然语言处理 搜索推荐
超强辅助,Bolt.diy 一步搞定创意建站
超强辅助,Bolt.diy 一步搞定创意建站
416 6
超强辅助,Bolt.diy 一步搞定创意建站