YOLOv11改进策略【小目标改进】| 添加专用于小目标的检测层 附YOLOv1~YOLOv11的检测头变化详解

简介: YOLOv11改进策略【小目标改进】| 添加专用于小目标的检测层 附YOLOv1~YOLOv11的检测头变化详解

前言

在目标检测领域,小目标检测一直是一个具有挑战性的问题。YOLO系列算法以其高效快速的特点受到广泛关注,然而在面对小目标时,仍存在一些局限性。本文将介绍如何在YOLOv11添加小目标检测层,以提高对小目标的检测能力。


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

一、YOLOv11原始模型结构介绍

YOLOv11原始模型结构如下:详细内容参考:YOLOv11原始模型结构介绍

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

二、有效特征层对应的检测头类别

2.1 P3/8 - small检测头

  • 原始模型中的P3/8特征层对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。
  • 适合检测尺寸大概在8x832x32像素左右的目标。

    2.2 P4/16 - medium检测头

  • 这个检测头对应的P4/16特征层经过了更多的下采样操作,相比P3/8特征图空间分辨率降低,但通道数增加,特征更抽象且有语义信息。
  • 它主要用于检测中等大小的目标,尺寸范围大概在32x3264x64像素左右。

    2.3 P5/32 - large检测头

  • P5/32是经过最多下采样操作得到的特征层,其空间分辨率最低,但语义信息最强、全局感受野最大。
  • 该检测头适合检测较大尺寸的目标,一般是尺寸在64x64像素以上的目标。

    2.4 新添加针对小目标的检测头

    • 新添加的检测头主要用于检测更小尺寸的目标。尺寸在4x48x8像素左右的微小目标。

💡这是因为在目标检测任务中,随着目标尺寸的减小,需要更高分辨率的特征图来有效捕捉目标特征。新添加的检测头很可能是基于这样的考虑,通过一系列的卷积、上采样和拼接等操作生成适合微小目标检测的特征图,从而提高模型对微小目标的检测能力。

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/143401650

目录
相关文章
|
1月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Head】| AFPN渐进式自适应特征金字塔,增加针对小目标的检测头(附模块详解和完整配置步骤)
YOLOv11改进策略【Head】| AFPN渐进式自适应特征金字塔,增加针对小目标的检测头(附模块详解和完整配置步骤)
177 12
YOLOv11改进策略【Head】| AFPN渐进式自适应特征金字塔,增加针对小目标的检测头(附模块详解和完整配置步骤)
|
1月前
|
机器学习/深度学习 编解码 计算机视觉
YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF
YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF
206 13
YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF
|
1月前
|
机器学习/深度学习 存储 TensorFlow
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
244 11
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
|
1月前
|
计算机视觉
YOLOv11改进策略【小目标改进】| 2024-TOP 自适应阈值焦点损失(ATFL)提升对小目标的检测能力
YOLOv11改进策略【小目标改进】| 2024-TOP 自适应阈值焦点损失(ATFL)提升对小目标的检测能力
279 11
YOLOv11改进策略【小目标改进】| 2024-TOP 自适应阈值焦点损失(ATFL)提升对小目标的检测能力
|
1月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【注意力机制篇】| 2024 PPA 并行补丁感知注意模块,提高小目标关注度
YOLOv11改进策略【注意力机制篇】| 2024 PPA 并行补丁感知注意模块,提高小目标关注度
84 11
YOLOv11改进策略【注意力机制篇】| 2024 PPA 并行补丁感知注意模块,提高小目标关注度
|
1月前
|
计算机视觉
RT-DETR改进策略【卷积层】| 2024最新轻量级自适应提取模块 LAE 即插即用 保留局部信息和全局信息
RT-DETR改进策略【卷积层】| 2024最新轻量级自适应提取模块 LAE 即插即用 保留局部信息和全局信息
43 4
RT-DETR改进策略【卷积层】| 2024最新轻量级自适应提取模块 LAE 即插即用 保留局部信息和全局信息
|
1月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
82 9
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
|
1月前
|
计算机视觉
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
62 5
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
|
1月前
|
编解码 计算机视觉
RT-DETR改进策略【Head】| 增加针对 大目标 的检测层 (四个检测头)
RT-DETR改进策略【Head】| 增加针对 大目标 的检测层 (四个检测头)
69 16
|
1月前
|
编解码 算法 计算机视觉
YOLOv11改进策略【Head】| 增加针对 大目标 的检测层 (四个检测头)
YOLOv11改进策略【Head】| 增加针对 大目标 的检测层 (四个检测头)
183 7