MGTE系列模型是在检索增强生成(Retrieval-Augmented Generation, RAG)的背景下开发的。RAG结合了检索和生成技术,利用外部知识库来提升大模型的回答准确性和丰富性。在RAG的实施过程中,文本表示模型(Embedding model)和排序模型(Reranker model)是两个关键组件。文本表示模型负责计算文本的向量表示,而排序模型则对文本进行精细排序,以提高检索效果。
- 模型构建
MGTE系列模型,由阿里巴巴通义实验室推出,主要包括GTE-Multilingual系列模型。这些模型具有以下特性:
高性能:在处理多语言检索任务和多任务表示模型评估方面表现出色。
长文档支持:能够处理长文本,满足复杂应用场景的需求。
多语言处理:支持多语言环境,适用于不同语言的应用场景。
弹性向量表示:提供灵活的文本向量表示,以适应不同的检索需求。 - 底座预训练
GTE系列模型基于双向注意力的Encoder-only结构,与Decoder-only模型相比,在召回和排序效果上表现更优。这些模型涵盖了基于BERT架构的模型及基于Qwen LLM系列训练的LLM embedding模型,如gte-Qwen2-1.5B-instruct和gte-Qwen2-7B-instruct。 - Embedding模型与排序模型
Embedding模型:计算文本的向量表示,通过余弦距离等方法计算文本之间的相关性分数。所有文档的向量表示可以在离线阶段计算,在线上只需处理用户查询的向量。
排序模型:将文本对作为输入,通过更精细的计算方法输出它们的相关性分数,实现更准确的排序效果。排序模型的计算复杂度较高,适用于小规模的候选集合。 - 模型效果
MGTE系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。这些模型在文本检索和多任务文本表征方面表现出色。 - 使用场景
这些模型被广泛应用于需要多语言检索、跨语言检索以及长文本处理的场景,特别是在提升大模型的回答准确性和丰富性方面发挥着重要作用。
GTE(General Text Embedding)模型和BERT(Bidirectional Encoder Representations from Transformers)模型在结构和应用上存在一些关键的区别:
结构上的区别:
模型架构:
BERT:BERT是基于Transformer的模型,特别是采用了双向 Transformer 结构。它包括多层双向自注意力机制,能够同时处理输入文本的左右上下文。
GTE:GTE模型通常是基于Encoder-only结构的,这意味着它们只包含编码器部分,而不包含解码器。这种结构使得GTE模型在处理长文本和多语言任务时更为高效。
预训练任务:
BERT:BERT的预训练包括两个主要任务:掩码语言模型(Masked Language Model, MLM)和下一句预测(Next Sentence Prediction, NSP)。
GTE:GTE模型的预训练可能包括不同的任务,如文本向量表示的学习,这可能涉及到不同的目标函数和训练策略。
应用上的区别:
文本表示:
BERT:BERT模型生成的是上下文敏感的词向量,它可以用于各种下游任务,如情感分析、问答系统等。
GTE:GTE模型专注于生成通用的文本向量表示,这些表示可以用于文本检索和排序等任务。
多语言支持:
BERT:虽然存在多语言版本的BERT(如mBERT),但它们主要是为处理多种语言而设计的。
GTE:GTE模型特别强调对多语言文本的处理,这使得它们在多语言检索任务中更为有效。
长文本处理:
BERT:BERT在处理长文本方面存在一定的限制,因为其自注意力机制的计算复杂度随文本长度的增加而显著增加。
GTE:GTE模型特别设计用于处理长文本,这使得它们在需要处理长文档的场景中更具优势。
总结来说,BERT模型主要用于生成上下文敏感的词向量,适用于广泛的NLP任务,而GTE模型则更专注于文本检索和排序,特别是在多语言和长文本处理方面具有优势。