Java基础之 JDK8 HashMap 源码分析(中间写出与JDK7的区别)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 这篇文章详细分析了Java中HashMap的源码,包括JDK8与JDK7的区别、构造函数、put和get方法的实现,以及位运算法的应用,并讨论了JDK8中的优化,如链表转红黑树的阈值和扩容机制。

导言

  1. HashMap 的源码分析,是面试中经常问到的地方,这也是写这篇博文的重要原因之一。
  2. 源码中有很多基础知识,是平时用不到的,比如位运算法,所以这里第一节就是先了解和学习一下位运算符。

一、基础铺垫

导言中也说了,基础知识有位运算法,位运算符的基础知识又与原码、反码、补码紧密相关,所以首当其冲的也要了解一下原码、反码、补码的基础知识。网上有比较好的资料,我也就不总结了,直接贴上他们的链接了

1. 文档学习

这几篇博文质量都很高,值得细细观看~

  1. 知乎上的文章:原码、反码、补码的基础了解
  2. 位运算法的基础了解
  3. java中常用的位运算符及其应用

2. 总结知识点

1. Java基础之位运算法

位运算 就是直接对整数在内存中的二进制位进行操作,针对与int类型进行操作
Java中常用的位运算符有以下7种:

& | ^ ~ << >> >>>
按位与 按位或 按位异或 取反 左移 带符号右移 无符号右移
  • 左移( << ) 整体左移,右边空出位补零,左边位舍弃 (-4 << 1 = -8)
  • 右移( >> ) 整体右移,左边空出位补零或补1(负数补1,正数补0),右边位舍弃 (-4 >> 1 = -2)
  • 无符号右移( >>> )同>>,但不管正数还是负数都左边位都补0 (-4 >>> 1 = 2147483646)
  • 与( & )每一位进行比较,两位都为1,结果为1,否则为0(-4 & 1 = 0)
  • 或( | )每一位进行比较,两位有一位是1,结果就是1(-4 | 1 = -3)
  • 非( ~ ) 每一位进行比较,按位取反(符号位也要取反)(~ -4 = 3)
  • 异或( ^ )每一位进行比较,相同为0,不同为1(^ -4 = -3)

3. 运算法-细节

  1. 位运算是针对整数的二进制进行的位移操作
  2. 整数 32位 , 正数符号为0,负数符号为1。十进制转二进制 不足32位的,最高位补符号位,其余补零
  3. 在Java中,整数的二进制是以补码的形式存在的
  4. 位运算计算完,还是补码的形式,要转成原码,再得出十进制值
  5. 正数:原码=反码=补码 负数:反码=原码忽略符号位取反, 补码=反码+1

例如:十进制4 转二进制在计算机中表示为(补码) 00000000 00000000 00000000 00000100

例如:十进制-4 转二进制在计算机中表示为(补码) 11111111 11111111 11111111 11111100

负数转二进制过程(以-4为例)

1、原码:10000000 00000000 00000000 00000100(转二进制,最高位为符号位)  
2、反码:11111111 11111111 11111111 11111011(符号位不变,其余取反)  
3、补码:11111111 11111111 11111111 11111100(反码+1)

-4 << 1 计算过程

1、-4 补码  11111111 11111111 11111111 11111100  
2、左移一位 11111111 11111111 11111111 11111000 (这时候还是补码)
# 如果最高位符号位为0,就不需要继续操作了,因为正数的补码=原码,如果最高位是1,继续往下走
3、转成反码 11111111 11111111 11111111 11110111 (补码-1)  
4、转成原码 10000000 00000000 00000000 00001000 (忽略符号位取反)  
5、转十进制 -8

二、HashMap 源码分析

1. jdk对应

jdk7版本是:数组+链表
jdk8版本是:数组+链表 or 数组+红黑树

HashMap 的 源码主要分析和学习有下面几个点

  • 常量(6个)
  • 构造函数(4个)
  • put() 函数
  • get() 函数
  • 扩容机制
  • 其他知识点
    1. 哈希函数
    2. 哈希冲突
    3. 红黑树

2. jdk8 HashMap 中常量解析

// 默认的容量大小 16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

// 最大的容量 为2 的 30次方
static final int MAXIMUM_CAPACITY = 1 << 30;

// 默认的加载因子 0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;

// 与JDK7区别:jdk8专有,红黑树。 链表的阈值大雨8的时候,转化为红黑树
static final int TREEIFY_THRESHOLD = 8;

// 与JDK7区别:jdk8专有,红黑树。 链表还原阈值,HashMap扩容时,会重新计算m,红黑树中的数量小于6时,红黑树转化为 链表 的结构
static final int UNTREEIFY_THRESHOLD = 6;

// 与JDK7区别:jdk8专有,红黑树。当哈希表中的容量大于64时,允许链表转化为红黑色。
// 存储箱可以树化的最小表容量。(否则,如果bin中的节点太多,则会调整表的大小。)应至少为4*TREEIFY_THRESHOLD,以避免调整大小和树化阈值之间的冲突。
static final int MIN_TREEIFY_CAPACITY = 64;

3. jdk8 HashMap 构造函数解析

按源码顺序 拿过来的代码

a、HashMap(int initialCapacity, float loadFactor)

可以自定义初始容量和加载因子

public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    // 如果自定义的容量 大于 最大的容量,则使用默认的最大容量             
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    // 初始化加载因子
    this.loadFactor = loadFactor;
    // 与JDK7区别:与JDK7功能一致,JDK7名为,jdk8换了一个名称。将当前桶的大小变为2的幂。
    this.threshold = tableSizeFor(initialCapacity);
}

// 返回给定目标容量的二次方大小。
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

b、HashMap(int initialCapacity)

仅自定义初始化容量大小,使用默认的加载因子,还是调用的上一节的有参构造函数

public HashMap(int initialCapacity){
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

c、HashMap()

无参构造函数
默认的加载因子0.75,默认的容量176

public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

d、HashMap(Map<? extends K, ? extends V> m)

public HashMap(Map<? extends K, ? extends V> m) {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    putMapEntries(m, false);
}

4. jdk8 HashMap put方法 解析

a、put(K key, V value)

public V put(K key, V value) {
    // 四个参数,第一个hash()值,第四个参数表示如果该key存在值,
    // 如果为null的话,则插入新的value,最后一个参数,在hashMap中没有用,可以不用管,使用默认的即可
    return putVal(hash(key), key, value, false, true);
}

b、hash(Object key)

// hash():哈希函数,根据key值通过hash()函数计算出哈希值,找到对应的table当中的位置。
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

c、putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict)

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    // tab 哈希数组, p: 该哈希桶的首节点, n: hashmap 的长度, i:计算出的数组下标
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // 先判断,然后获取长度 并 进行扩容,使用的是懒加载,table 一开始是没有加载的,等put后才开始加载
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    /**
    计算插入存储的数组索引i:根据键值key计算的hash值得到 i
        此处的数组下标方式 i=(n - 1) & hash, 同JDK 1.7 中的 indexFor()一致,JDK8变成了一句话
    插入时,需判断是否存在Hash冲突:
        若不存在(即当前tab[i]==null),则直接在该数组位置新建节点,插入完毕
    **/
    if ((p = tab[i = (n - 1) & hash]) == null)
        // 插入新节点
        tab[i] = newNode(hash, key, value, null);
    // 否则,代表存在Hash冲突,即当前存储位置已存在节点,则依次往下判断:
    else {
        // e: 临时节点的作用, k 存放该当前节点的key
        Node<K,V> e; K k;
        // 第一种:当前位置的key是否与需插入的key相同,若相同 则 直接用 新value 覆盖 旧value
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        // 第二种:判断需插入的数据结构是否为 红黑树 or 链表发生哈希冲突的几种情况
        else if (p instanceof TreeNode)
            /**
            如果是红黑树的节点,向红黑树插入 or 更新数据(键值对)
            过程:遍历红黑树 判断该节点的key 是否与需插入的key相同:
                a、若相同,则新value 覆盖 旧value
                b、若不相同,则插入
            **/
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        // 第三种:hash值 不等于首节点,不为红黑树的节点,则为链表的节点
        else {
            // 遍历该链表
            for (int binCount = 0; ; ++binCount) {
                // 如果找到尾部,则表明添加的 key-value 没有重复,在尾部进行添加
                if ((e = p.next) == null) {
                    // 与JDK7区别,JDK8是在链表尾部添加,JDK7在头部添加
                    p.next = newNode(hash, key, value, null);
                    // 判断是否要转换为红黑树结构 TREEIFY_THRESHOLD值为8
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                // 如果 链表中有重复的 key ,e 则为当前重复的节点,结束循环
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        // 有重复的 key,则用待插入值进行覆盖,返回旧值。
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    // 到了此步骤,则表明待插入的key-value 是没有key 的重复,因为插入成功e节点的值为null
    // 修改次数 +1
    ++modCount;
    // 实际长度 +1,判断是否大于临界值,大于则扩容
    if (++size > threshold)
        resize();
    // 调用 LinkedHashMap的实现方法,其实什么也没做,因为这里 evict=true
    afterNodeInsertion(evict);
    // 添加成功
    return null;
}

d、resize() 扩容

e、putTreeVal(this, tab, hash, key, value) 插入到红黑树

f、treeifyBin(tab, hash);链表转红黑树

5. jdk8 HashMap get方法 解析

a、get(Object key)

public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

b、getNode(int hash, Object key)

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    // 判断哈希表是否为空
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 判断第一个key是否为想要查询的key,如果是则返回
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 判断如果第一个节点的next节点不为null
        if ((e = first.next) != null) {
            //     判断第一个节点类型是否为树节点,如果是树节点,那么就走树结构查询节点的逻辑,并返回
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            // 如果代码能走到这里,说明该位置一定是链表,那么就进行遍历,如果遍历到了就返回
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

c、getTreeNode(hash, key) 红黑树查询

final TreeNode<K,V> getTreeNode(int h, Object k) {
    return ((parent != null) ? root() : this).find(h, k, null);
}

d、find(int h, Object k, Class<?> kc)红黑树查询节点

final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
    TreeNode<K,V> p = this;
    do {
        int ph, dir; K pk;
        TreeNode<K,V> pl = p.left, pr = p.right, q;
        if ((ph = p.hash) > h)
            p = pl;
        else if (ph < h)
            p = pr;
        else if ((pk = p.key) == k || (k != null && k.equals(pk)))
            return p;
        else if (pl == null)
            p = pr;
        else if (pr == null)
            p = pl;
        else if ((kc != null ||
                  (kc = comparableClassFor(k)) != null) &&
                 (dir = compareComparables(kc, k, pk)) != 0)
            p = (dir < 0) ? pl : pr;
        else if ((q = pr.find(h, k, kc)) != null)
            return q;
        else
            p = pl;
    } while (p != null);
    return null;
}
相关文章
|
1月前
|
缓存 Java Maven
java: 警告: 源发行版 11 需要目标发行版 11 无效的目标发行版: 11 jdk版本不符,项目jdk版本为其他版本
如何解决Java项目中因JDK版本不匹配导致的编译错误,包括修改`pom.xml`文件、调整项目结构、设置Maven和JDK版本,以及清理缓存和重启IDEA。
46 1
java: 警告: 源发行版 11 需要目标发行版 11 无效的目标发行版: 11 jdk版本不符,项目jdk版本为其他版本
|
23天前
|
设计模式 Java API
[Java]静态代理与动态代理(基于JDK1.8)
本文介绍了代理模式及其分类,包括静态代理和动态代理。静态代理分为面向接口和面向继承两种形式,分别通过手动创建代理类实现;动态代理则利用反射技术,在运行时动态创建代理对象,分为JDK动态代理和Cglib动态代理。文中通过具体代码示例详细讲解了各种代理模式的实现方式和应用场景。
19 0
[Java]静态代理与动态代理(基于JDK1.8)
|
1月前
|
Java 关系型数据库 开发工具
idea创建不了spring2.X版本,无法使用JDK8,最低支持JDK17 , 如何用idea创建spring2.X版本,使用JDK8解决方案
本文提供了解决方案,如何在IDEA中创建Spring 2.X版本的项目并使用JDK8,尽管Spring 2.X已停止维护且IDEA不再直接支持,通过修改pom.xml或使用阿里云的国内源来创建项目。
73 0
idea创建不了spring2.X版本,无法使用JDK8,最低支持JDK17 , 如何用idea创建spring2.X版本,使用JDK8解决方案
|
1月前
|
Oracle Java 关系型数据库
jdk17安装全方位手把手安装教程 / 已有jdk8了,安装JDK17后如何配置环境变量 / 多个不同版本的JDK,如何配置环境变量?
本文提供了详细的JDK 17安装教程,包括下载、安装、配置环境变量的步骤,并解释了在已有其他版本JDK的情况下如何管理多个JDK环境。
702 0
|
2月前
|
Java
安装JDK18没有JRE环境的解决办法
安装JDK18没有JRE环境的解决办法
324 3
|
3月前
|
Java 关系型数据库 MySQL
"解锁Java Web传奇之旅:从JDK1.8到Tomcat,再到MariaDB,一场跨越数据库的冒险安装盛宴,挑战你的技术极限!"
【8月更文挑战第19天】在Linux上搭建Java Web应用环境,需安装JDK 1.8、Tomcat及MariaDB。本指南详述了使用apt-get安装OpenJDK 1.8的方法,并验证其版本。接着下载与解压Tomcat至`/usr/local/`目录,并启动服务。最后,通过apt-get安装MariaDB,设置基本安全配置。完成这些步骤后,即可验证各组件的状态,为部署Java Web应用打下基础。
57 1
|
3月前
|
Oracle Java 关系型数据库
Mac安装JDK1.8
Mac安装JDK1.8
694 4
|
4月前
|
Java Linux
Linux复制安装 jdk 环境
Linux复制安装 jdk 环境
108 3
|
5天前
|
Ubuntu Java
Ubuntu之jdk安装
以下是Ubuntu之jdk安装的详细内容
12 0
|
3月前
|
Java 开发工具
开发工具系列 之 同一个电脑上安装多个版本的JDK
这篇文章介绍了如何在一台电脑上安装和配置多个版本的JDK,包括从官网下载所需JDK、安装过程、配置环境变量以及如何查看和切换当前使用的JDK版本,并提到了如果IDEA和JDK版本不兼容时的解决方法。
开发工具系列 之 同一个电脑上安装多个版本的JDK