Flask学习笔记(二):基于Flask框架上传图片到服务器端并原名保存

简介: 关于如何使用Flask框架上传图片到服务器端并以其原名保存的教程。

1.什么是Flask

  • Flask是一个基于python开发并依赖于 jinja2 模板和 werkzeug WSGI 服务器的一个微型框架。
  • 而werkzeug本质上是一个 socket 服务端,用于接收浏览器发送过来的请求,并进行预处理,然后再触发flask,这个时候我们就通过flask给我们提供的功能去对浏览器发送的请求做一个处理,当要处理的文件相对比较复杂时,则需要通过jinja2模板来处理,也就是我们常说的 渲染 ,之后再把处理过的数据返回给浏览器

学习链接

2.通过Flask上传图片到服务器端(以原名保存)

server.py

from flask import request
from flask import Flask
import json
import numpy as np

import cv2
import base64
from gevent.pywsgi import WSGIServer

app = Flask(__name__)

# 定义路由
@app.route("/photo", methods=['POST'])
def get_frame():
    # 接收图片
    # upload_file = json.loads(request.json)
    # print(upload_file['file'])
    # upload_file=request.form['file']
    filename=request.get_json()
    print(filename)
    # print(type(filename)=='str')

    if (isinstance(filename,str)):
        filname1=json.loads(filename)
        tmp=filname1['file']
        name=filname1['name']
        img = base64.b64decode(str(tmp))
        image_data = np.fromstring(img, np.uint8)
        image_data = cv2.imdecode(image_data, cv2.IMREAD_COLOR)
        cv2.imwrite('F:/pycharm/feature_match/face_result/{}'.format(name), image_data)
    else:
        tmp=filename['file']
        img = base64.b64decode(str(tmp))
        image_data = np.fromstring(img, np.uint8)
        image_data = cv2.imdecode(image_data, cv2.IMREAD_COLOR)
        cv2.imwrite('F:/pycharm/feature_match/face_result/1.jpg', image_data)
    # fff=json.load(filename)
    # print(upload_file)
    # img=cv2.imread(tmp)
    # cv2.imwrite("222.jpg",img)
    # print(className,prob)
    json_info = json.dumps(dic, ensure_ascii=False)
    return json_info

if __name__ == "__main__":
    dic = {}
    app.run(host='10.16.55.26',port=9000)
    ## Serve the app with gevent
    # http_server = WSGIServer(('0.0.0.1',5000),app)
    # http_server.serve_forever()

client.py

import requests
import base64,glob
import json,cv2,os
import numpy as np
# API地址
url = "http://10.16.55.26:9000/photo"

# opencv读取出来的图片相当于numpy数组
def cv2_to_base64(image):
    image1 = cv2.imencode('.jpg', image)[1]
    image_code = str(base64.b64encode(image1))[2:-1]
    return image_code

def base64_to_cv2(image_code):
    #解码
    img_data=base64.b64decode(image_code)
    #转为numpy
    img_array=np.fromstring(img_data,np.uint8)
    #转成opencv可用格式
    img=cv2.imdecode(img_array,cv2.COLOR_RGB2BGR)
    return img
# with open(r'D:\pycharm\car_fee_system\images\result\2.jpg', 'rb') as f:
#     img = base64.b64encode(f.read()).decode()
path=r'D:\pycharm\car_fee_system\images\result/'
images_paths = glob.glob(os.path.join(path + '*.jpg')) #*.jpg中的*,表示能匹配多个字符
for images_path in images_paths:
    a,b= os.path.splitext(os.path.split(images_path)[1])
    name=str(a)+str(b)
    print(name)
    image=cv2.imread(images_path)
    image_code=cv2_to_base64(image)
    image = []
    image.append(image_code)
    # 拼接参数
    files = {'file': image,'name': name}
    fff=json.dumps(files, ensure_ascii=False)
    # 发送post请求到服务器端json.dumps(files, ensure_ascii=False)
    # r = requests.post(url, json=json.dumps(files, ensure_ascii=False))
    r = requests.post(url, json=fff)
    print(r.status_code)
    print(r.content)
    print(type(json.dumps(files, ensure_ascii=False)))

client_camera.py

import requests
import base64,glob
import json,cv2,os
import numpy as np
# API地址
url = "http://10.16.55.26:9000/photo"

# opencv读取出来的图片相当于numpy数组
def cv2_to_base64(image):
    image1 = cv2.imencode('.jpg', image)[1]
    image_code = str(base64.b64encode(image1))[2:-1]
    return image_code

def base64_to_cv2(image_code):
    #解码
    img_data=base64.b64decode(image_code)
    #转为numpy
    img_array=np.fromstring(img_data,np.uint8)
    #转成opencv可用格式
    img=cv2.imdecode(img_array,cv2.COLOR_RGB2BGR)
    return img
# with open(r'D:\pycharm\car_fee_system\images\result\2.jpg', 'rb') as f:
#     img = base64.b64encode(f.read()).decode()
# frame 就是每一帧图像,是个三维矩阵
# 参数是0,表示打开笔记本的内置摄像头,参数是视频文件路径则打开视频
capture = cv2.VideoCapture(0)
ret, frame = capture.read()
a='cemare1'
b=1
while ret:
    b+=1
    if b%5==0:
        ret, frame = capture.read()
        name=str(a)+'-'+str(b)
        image_code=cv2_to_base64(frame)
        image = []
        image.append(image_code)
        # 拼接参数
        files = {'file': image,'name': name}
        fff=json.dumps(files, ensure_ascii=False)
        # 发送post请求到服务器端json.dumps(files, ensure_ascii=False)
        # r = requests.post(url, json=json.dumps(files, ensure_ascii=False))
        r = requests.post(url, json=fff)
        print('200为成功 500为失败',r.status_code)
        print('正在上传第{}张图片,图片名为{}'.format(b,name))
    # print(r.content)
    # print(type(json.dumps(files, ensure_ascii=False)))
目录
相关文章
|
1月前
|
Python
Socket学习笔记(二):python通过socket实现客户端到服务器端的图片传输
使用Python的socket库实现客户端到服务器端的图片传输,包括客户端和服务器端的代码实现,以及传输结果的展示。
137 3
Socket学习笔记(二):python通过socket实现客户端到服务器端的图片传输
|
1月前
|
JSON 数据格式 Python
Socket学习笔记(一):python通过socket实现客户端到服务器端的文件传输
本文介绍了如何使用Python的socket模块实现客户端到服务器端的文件传输,包括客户端发送文件信息和内容,服务器端接收并保存文件的完整过程。
147 1
Socket学习笔记(一):python通过socket实现客户端到服务器端的文件传输
|
1月前
|
Python
Flask学习笔记(三):基于Flask框架上传特征值(相关数据)到服务器端并保存为txt文件
这篇博客文章是关于如何使用Flask框架上传特征值数据到服务器端,并将其保存为txt文件的教程。
31 0
Flask学习笔记(三):基于Flask框架上传特征值(相关数据)到服务器端并保存为txt文件
|
1月前
|
JSON 测试技术 数据库
Python的Flask框架
【10月更文挑战第4天】Python的Flask框架
|
1月前
|
存储 安全 数据库
Flask框架中,如何实现用户身份验证和会话管理?
【10月更文挑战第4天】Flask框架中,如何实现用户身份验证和会话管理?
|
1月前
|
Unix 中间件 数据库
bottle flask 框架对比
Flask:Flask是一个轻量级的Web应用框架, 使用Python编写。
30 0
|
弹性计算 前端开发 关系型数据库
利用云服务器ECS部署flask的心得
部署flask项目的一些心得
|
8天前
|
机器学习/深度学习 人工智能 弹性计算
什么是阿里云GPU云服务器?GPU服务器优势、使用和租赁费用整理
阿里云GPU云服务器提供强大的GPU算力,适用于深度学习、科学计算、图形可视化和视频处理等多种场景。作为亚太领先的云服务提供商,阿里云的GPU云服务器具备灵活的资源配置、高安全性和易用性,支持多种计费模式,帮助企业高效应对计算密集型任务。
|
10天前
|
存储 分布式计算 固态存储
阿里云2核16G、4核32G、8核64G配置云服务器租用收费标准与活动价格参考
2核16G、8核64G、4核32G配置的云服务器处理器与内存比为1:8,这种配比的云服务器一般适用于数据分析与挖掘,Hadoop、Spark集群和数据库,缓存等内存密集型场景,因此,多为企业级用户选择。目前2核16G配置按量收费最低收费标准为0.54元/小时,按月租用标准收费标准为260.44元/1个月。4核32G配置的阿里云服务器按量收费标准最低为1.08元/小时,按月租用标准收费标准为520.88元/1个月。8核64G配置的阿里云服务器按量收费标准最低为2.17元/小时,按月租用标准收费标准为1041.77元/1个月。本文介绍这些配置的最新租用收费标准与活动价格情况,以供参考。
|
8天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云GPU服务器全解析_GPU价格收费标准_GPU优势和使用说明
阿里云GPU云服务器提供强大的GPU算力,适用于深度学习、科学计算、图形可视化和视频处理等场景。作为亚太领先的云服务商,阿里云GPU云服务器具备高灵活性、易用性、容灾备份、安全性和成本效益,支持多种实例规格,满足不同业务需求。