空调应用可再生能源的集装箱型数据中心

简介:

日本Aosfield(新潟市)与Getworks(埼玉市)将要在新潟县南鱼沼郡汤泽町建设利用可再生能源的“集装箱数据中心”。名称为“汤泽IT集装箱场”,预定于明年4月竣工。

据称,数据中心的冷热源通过组合使用汤泽町的降雪、河水和室外的凉空气,全年的空调电费将会比通常减少90%以上。数据中心将在地处暴雪地区的汤泽町协助下,建在町有土地上,将储存雪作夏季的冷热源使用。将是世界上第一个结合使用雪、河水和室外空气的数据中心空调系统。为今冬储雪供来年夏季使用,一期工程已于今年11月开工,雪将使用简易的保雪膜保存。集装箱数据中心将设置1~2台,预定于2017年4月投入运转。之后,2017年6~11月的二期工程将建设储雪设备,使集装箱数据中心最多增加到5台。力争在2019年之前达到10台。

发布称,“集装箱数据中心”是Getworks于2013年开发的。由海上运输干货集装箱改造而成,内置电源和空调。1只集装箱可容纳5台服务器机柜(1台服务器机柜可容纳30~40台服务器)。因为是一体型,所以设置简单,发生灾害时可以转移。本次在汤泽町设置的数据中心,是继埼玉市、福岛县白河市、新潟县津南町之后的第4座。未来还考虑并设可收集集装箱数据中心排放的废热,利用集装箱开展水培和养殖等,有助于为当地经济作贡献的设备。

数据中心运用可再生能源的例子有SAKURAInternet于2015年8月在北海道石狩市投入运转的“SAKURAInternet石狩光伏电站”。该电站是输出功率为200kW的光伏发电设备,向该公司的数据中心供电。

在美国,谷歌等IT大型企业等,为给数据中心供电,而与电力公司签署购买百万光伏电站电力的协议的举措引人关注。作为消费大量电力的数据中心的环保措施,节能及利用可再生能源的动态,在日本国内外正日益活跃。

本文转自d1net(转载)

目录
相关文章
|
1月前
|
运维 监控 持续交付
自动化运维在现代数据中心的应用与实践####
本文探讨了自动化运维技术在现代数据中心中的应用现状与实践案例,分析了其如何提升运维效率、降低成本并增强系统稳定性。通过具体实例,展示了自动化工具如Ansible、Puppet及Docker在环境配置、软件部署、故障恢复等方面的实际应用效果,为读者提供了一套可参考的实施框架。 ####
|
1月前
|
机器学习/深度学习 人工智能 运维
智能化运维在现代数据中心的应用与挑战####
本文深入探讨了智能化运维(AIOps)技术在现代数据中心管理中的实际应用,分析了其带来的效率提升、成本节约及潜在风险。通过具体案例,阐述了智能监控、自动化故障排查、容量规划等关键功能如何助力企业实现高效稳定的IT环境。同时,文章也指出了实施过程中面临的数据隐私、技术整合及人才短缺等挑战,并提出了相应的解决策略。 --- ####
58 1
|
1月前
|
机器学习/深度学习 数据采集 人工智能
智能化运维在现代数据中心的应用与挑战####
本文深入探讨了智能化运维(AIOps)技术如何革新现代数据中心的运维管理,通过集成人工智能、大数据分析及自动化工具,显著提升系统稳定性、效率和响应速度。文章首先概述了AIOps的核心概念与技术框架,随后详细分析了其在故障预测、异常检测、容量规划及事件响应等方面的应用实例,最后探讨了实施过程中面临的数据质量、技能匹配及安全性等挑战,并提出了相应的应对策略。本研究旨在为数据中心管理者提供关于采纳和优化AIOps实践的洞见,以期推动行业向更高效、智能的运维模式转型。 ####
|
2月前
|
人工智能 运维 监控
智能运维在现代数据中心的应用与挑战
随着云计算和大数据技术的迅猛发展,现代数据中心的运维管理面临着前所未有的挑战。本文探讨了智能运维技术在数据中心中的应用,包括自动化监控、故障预测与诊断、资源优化等方面,并分析了当前面临的主要挑战,如数据安全、系统集成复杂性等。通过实际案例分析,展示了智能运维如何帮助数据中心提高效率、降低成本,并提出了未来发展趋势和建议。
|
8月前
|
机器学习/深度学习 数据挖掘 物联网
【专栏】机器学习如何通过预测性维护、负载预测、动态冷却管理和能源效率优化提升数据中心能效
【4月更文挑战第27天】随着信息技术发展,数据中心能耗问题日益突出,占全球电力消耗一定比例。为提高能效,业界探索利用机器学习进行优化。本文讨论了机器学习如何通过预测性维护、负载预测、动态冷却管理和能源效率优化提升数据中心能效。然而,数据质量、模型解释性和规模化扩展是当前挑战。未来,随着技术进步和物联网发展,数据中心能效管理将更智能自动化,机器学习将在实现绿色高效发展中发挥关键作用。
143 5
|
5月前
|
机器学习/深度学习 存储 算法
利用机器学习优化数据中心的能源效率
【8月更文挑战第30天】 在信息技术不断进步的今天,数据中心作为支撑云计算、大数据分析和人工智能等技术的核心基础设施,其能源效率已成为衡量运营成本和环境可持续性的关键指标。本文旨在探讨如何通过机器学习技术对数据中心进行能源效率优化。首先,文中介绍了数据中心能耗的主要组成部分及其影响因素。其次,详细阐述了机器学习模型在预测和管理数据中心能源消耗方面的应用,并通过案例分析展示了机器学习算法在实际环境中的效果。最后,文章讨论了机器学习优化策略实施的潜在挑战与未来发展方向。
|
7月前
|
SDN 网络虚拟化 虚拟化
云数据中心中的SDN/NFV应用
【6月更文挑战第9天】计算和存储虚拟化技术在云计算IDC中已基本满足需求,但网络成为新瓶颈,主要问题包括虚拟化环境下的网络配置复杂度增加、拓扑展现困难和无法动态调整资源。
|
8月前
|
机器学习/深度学习 算法 大数据
利用机器学习优化数据中心的能源效率
【5月更文挑战第5天】 在本文中,我们探索了如何通过应用机器学习技术来改善数据中心的能源效率。传统的数据中心能源管理依赖于静态阈值和规则,这限制了它们在动态环境中优化能效的能力。我们提出了一个基于机器学习的框架,该框架能够实时分析数据中心的能耗模式,并自动调整资源分配以降低功耗。我们的方法结合了历史数据学习和实时预测模型,以实现更精细化的能源管理策略。实验结果表明,我们的机器学习模型相比传统方法在能源节约方面取得了显著的提升。
|
8月前
|
机器学习/深度学习 算法 数据处理
利用机器学习优化数据中心的能源效率
【5月更文挑战第20天】 在数据中心管理和运营中,能源效率的优化是降低运营成本和减少环境影响的关键因素。随着人工智能技术的进步,特别是机器学习(ML)的发展,出现了新的机会来提高数据中心的能效。本文将探讨如何通过应用机器学习算法对数据中心的能源消耗进行建模、预测和实时管理,以实现更高的能源节省。我们将分析不同ML模型在处理大规模数据集时的性能,并讨论实施过程中的挑战与潜在解决方案。
69 0
|
8月前
|
网络安全 数据中心 网络架构
【专栏】标准19英寸机架及其尺寸单位1U和2U在数据中心和通信机房中的应用
【4月更文挑战第28天】本文介绍了标准19英寸机架及其尺寸单位1U和2U在数据中心和通信机房中的应用。19英寸机架是国际标准,宽度48.26厘米,深度可定制。1U等于4.445厘米,2U是1U的两倍。1U设备适用于空间有限的情况,2U则提供更大空间和更好的散热。选择机架时需考虑空间、散热和电力需求,设备布局要保证散热和电缆管理。理解这些标准对于优化空间利用和系统管理至关重要。
781 0