图论可达性c语言实现

简介: 这篇文章详细解释了图论中可达性的概念,并提供了无向图和有向图的C语言实现代码,包括图的初始化、边的添加、深度优先搜索(DFS)以及可达性的检查。

概述

图论中的可达性是指在图中是否存在从一个顶点到另一个顶点的路径。这是图论中的一个基本概念,对于许多实际问题的建模和解决都非常重要。以下是关于图论可达性的一些重要概念和信息:

  1. 有向图和无向图: 图可以分为有向图和无向图。在有向图中,边有方向,从一个顶点到另一个顶点的路径是有向的。在无向图中,边没有方向,路径是无向的。

  2. 可达性定义: 在有向图中,从顶点A到顶点B的可达性表示存在一条有向路径从A到B。在无向图中,如果存在一条路径从顶点A到顶点B,那么A和B被认为是可达的。

  3. 深度优先搜索(DFS): DFS是一种用于遍历图的算法,可以用来检查可达性。通过从起始顶点开始,尽可能深入图中,直到无法继续为止。DFS可以用来查找路径并判断两个顶点之间是否可达。

  4. 广度优先搜索(BFS): BFS是另一种遍历图的算法,它从起始顶点开始,逐层遍历图。BFS也可以用于检查可达性,并找到最短路径。

  5. 图的表示: 图可以通过邻接矩阵或邻接表等方式表示。邻接矩阵是一个二维数组,其中元素表示顶点之间的连接关系。邻接表是一种更灵活的表示方法,使用链表来表示每个顶点的邻接顶点。

  6. 应用: 可达性在许多领域都有重要应用,如网络路由、社交网络分析、数据库查询优化等。在计算机科学和工程中,图的可达性是解决许多实际问题的关键步骤。

总的来说,图论中的可达性是一个关键的概念,它帮助我们理解图结构中的路径和连接关系,为解决各种问题提供了强大的工具。

以下是无向图的可达性实现代码。

无向图完整代码

#include <stdio.h>
#include <stdlib.h>

#define MAX_VERTICES 100

// 定义图的结构
struct Graph {
    int vertices;          // 图的顶点数
    int adjacencyMatrix[MAX_VERTICES][MAX_VERTICES];  // 邻接矩阵表示图的连接关系
};

// 函数声明
void initGraph(struct Graph* graph, int vertices);
void addEdge(struct Graph* graph, int start, int end);
void DFS(struct Graph* graph, int vertex, int visited[MAX_VERTICES]);
void checkReachability(struct Graph* graph, int start, int end);

int main() {
    struct Graph graph;
    int vertices, edges, start, end;

    // 输入图的顶点数和边数
    printf("输入图的顶点数和边数:");
    scanf("%d %d", &vertices, &edges);

    initGraph(&graph, vertices);

    // 输入图的边
    printf("输入图的边(每行包含两个顶点,表示一条边):\n");
    for (int i = 0; i < edges; i++) {
        int startVertex, endVertex;
        scanf("%d %d", &startVertex, &endVertex);
        addEdge(&graph, startVertex, endVertex);
    }

    // 输入要检查可达性的起始点和结束点
    printf("输入要检查可达性的起始点和结束点:");
    scanf("%d %d", &start, &end);

    // 检查可达性
    checkReachability(&graph, start, end);

    return 0;
}

// 初始化图
void initGraph(struct Graph* graph, int vertices) {
    graph->vertices = vertices;

    // 初始化邻接矩阵
    for (int i = 0; i < vertices; i++) {
        for (int j = 0; j < vertices; j++) {
            graph->adjacencyMatrix[i][j] = 0;
        }
    }
}

// 添加边
void addEdge(struct Graph* graph, int start, int end) {
    // 有向图,将起始点到结束点的边标记为1
    graph->adjacencyMatrix[start][end] = 1;
}

// 深度优先搜索
void DFS(struct Graph* graph, int vertex, int visited[MAX_VERTICES]) {
    visited[vertex] = 1;
    printf("%d ", vertex);

    for (int i = 0; i < graph->vertices; i++) {
        if (graph->adjacencyMatrix[vertex][i] == 1 && !visited[i]) {
            DFS(graph, i, visited);
        }
    }
}

// 检查可达性
void checkReachability(struct Graph* graph, int start, int end) {
    int visited[MAX_VERTICES] = {0};

    printf("从顶点 %d 出发,DFS 遍历结果为:", start);
    DFS(graph, start, visited);

    if (visited[end]) {
        printf("\n%d 可达 %d\n", start, end);
    } else {
        printf("\n%d 不可达 %d\n", start, end);
    }
}

测试无向图

有向图完整代码

#include <stdio.h>
#include <stdlib.h>

#define MAX_VERTICES 100

// 定义图的结构
struct Graph {
    int vertices;          // 图的顶点数
    int adjacencyMatrix[MAX_VERTICES][MAX_VERTICES];  // 邻接矩阵表示图的连接关系
};

// 函数声明
void initGraph(struct Graph* graph, int vertices);
void addEdge(struct Graph* graph, int start, int end);
void DFS(struct Graph* graph, int vertex, int visited[MAX_VERTICES]);
void checkReachability(struct Graph* graph, int start, int end);

int main() {
    struct Graph graph;
    int vertices, edges, start, end;

    // 输入图的顶点数和边数
    printf("输入图的顶点数和边数:");
    scanf("%d %d", &vertices, &edges);

    initGraph(&graph, vertices);

    // 输入图的边
    printf("输入图的边(每行包含两个顶点,表示一条边):\n");
    for (int i = 0; i < edges; i++) {
        int startVertex, endVertex;
        scanf("%d %d", &startVertex, &endVertex);
        addEdge(&graph, startVertex, endVertex);
    }

    // 输入要检查可达性的起始点和结束点
    printf("输入要检查可达性的起始点和结束点:");
    scanf("%d %d", &start, &end);

    // 检查可达性
    checkReachability(&graph, start, end);

    return 0;
}

// 初始化图
void initGraph(struct Graph* graph, int vertices) {
    graph->vertices = vertices;

    // 初始化邻接矩阵
    for (int i = 0; i < vertices; i++) {
        for (int j = 0; j < vertices; j++) {
            graph->adjacencyMatrix[i][j] = 0;
        }
    }
}

// 添加边
void addEdge(struct Graph* graph, int start, int end) {
    // 有向图,将起始点到结束点的边标记为1
    graph->adjacencyMatrix[start][end] = 1;
}

// 深度优先搜索
void DFS(struct Graph* graph, int vertex, int visited[MAX_VERTICES]) {
    visited[vertex] = 1;
    printf("%d ", vertex);

    for (int i = 0; i < graph->vertices; i++) {
        if (graph->adjacencyMatrix[vertex][i] == 1 && !visited[i]) {
            DFS(graph, i, visited);
        }
    }
}

// 检查可达性
void checkReachability(struct Graph* graph, int start, int end) {
    int visited[MAX_VERTICES] = {0};

    printf("从顶点 %d 出发,DFS 遍历结果为:", start);
    DFS(graph, start, visited);

    if (visited[end]) {
        printf("\n%d 可达 %d\n", start, end);
    } else {
        printf("\n%d 不可达 %d\n", start, end);
    }
}

测试有向图

目录
相关文章
|
23天前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
15天前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
|
19天前
|
机器学习/深度学习 算法 大数据
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
2570 22
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
|
17天前
|
人工智能 IDE 程序员
期盼已久!通义灵码 AI 程序员开启邀测,全流程开发仅用几分钟
在云栖大会上,阿里云云原生应用平台负责人丁宇宣布,「通义灵码」完成全面升级,并正式发布 AI 程序员。
|
1天前
|
存储 人工智能 搜索推荐
数据治理,是时候打破刻板印象了
瓴羊智能数据建设与治理产品Datapin全面升级,可演进扩展的数据架构体系为企业数据治理预留发展空间,推出敏捷版用以解决企业数据量不大但需构建数据的场景问题,基于大模型打造的DataAgent更是为企业用好数据资产提供了便利。
152 2
|
19天前
|
机器学习/深度学习 算法 数据可视化
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
1566 16
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
|
2天前
|
JSON 自然语言处理 数据管理
阿里云百炼产品月刊【2024年9月】
阿里云百炼产品月刊【2024年9月】,涵盖本月产品和功能发布、活动,应用实践等内容,帮助您快速了解阿里云百炼产品的最新动态。
阿里云百炼产品月刊【2024年9月】
|
21天前
|
编解码 JSON 自然语言处理
通义千问重磅开源Qwen2.5,性能超越Llama
击败Meta,阿里Qwen2.5再登全球开源大模型王座
922 14
|
16天前
|
人工智能 开发框架 Java
重磅发布!AI 驱动的 Java 开发框架:Spring AI Alibaba
随着生成式 AI 的快速发展,基于 AI 开发框架构建 AI 应用的诉求迅速增长,涌现出了包括 LangChain、LlamaIndex 等开发框架,但大部分框架只提供了 Python 语言的实现。但这些开发框架对于国内习惯了 Spring 开发范式的 Java 开发者而言,并非十分友好和丝滑。因此,我们基于 Spring AI 发布并快速演进 Spring AI Alibaba,通过提供一种方便的 API 抽象,帮助 Java 开发者简化 AI 应用的开发。同时,提供了完整的开源配套,包括可观测、网关、消息队列、配置中心等。
695 9
|
15天前
|
存储 监控 调度
云迁移中心CMH:助力企业高效上云实践全解析
随着云计算的发展,企业上云已成为创新发展的关键。然而,企业上云面临诸多挑战,如复杂的应用依赖梳理、成本效益分析等。阿里云推出的云迁移中心(CMH)旨在解决这些问题,提供自动化的系统调研、规划、迁移和割接等功能,简化上云过程。CMH通过评估、准备、迁移和割接四个阶段,帮助企业高效完成数字化转型。未来,CMH将继续提升智能化水平,支持更多行业和复杂环境,助力企业轻松上云。