基于LangChain手工测试用例转App自动化测试生成工具

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 在传统App自动化测试中,测试工程师需手动将功能测试用例转化为自动化用例。市面上多数产品通过录制操作生成测试用例,但可维护性差。本文探讨了利用大模型直接生成自动化测试用例的可能性,介绍了如何使用LangChain将功能测试用例转换为App自动化测试用例,大幅节省人力与资源。通过封装App底层工具并与大模型结合,记录执行步骤并生成自动化测试代码,最终实现高效自动化的测试流程。

在传统编写 App 自动化测试用例的过程中,基本都是需要测试工程师,根据功能测试用例转换为自动化测试的用例。市面上自动生成 Web 或 App 自动化测试用例的产品无非也都是通过录制的方式,获取操作人的行为操作,从而记录测试用例。整个过程类似于

image.png

但是通常录制出来的用例可用性、可维护性都不强,而且依然需要人手工介入录制的过程。

在 LLM 问世之后,我们便在探索,是否有第二种可能性,由大模型执行功能测试用例,生成自动化测试用例?

在前面的章节 基于 LangChain 手工测试用例转 Web 自动化测试生成工具中,给大家讲解了手工用例转 Web 自动化测试用例的过程,而 App 自动化测试用例生成的原理也基本类似。

应用价值

测试工程师在编写用例的过程中,将操作步骤明确的表达出来。即可通过大模型将功能测试用例可以直接转为 App 自动化测试用例。极大的节省了人力与资源。

实践演练

实现原理

整个实现原理如下图所示:

image.png

实现思路

测试用例规范与要求

如果想要将功能用例转换为自动化测试用例,那么对功能测试用例则需要清晰,明确的表达出来每个操作步骤。如果测试用例本身就表达的含糊不清,那么自然大模型是无法识别它需要进行的具体的操作步骤的。

如下所示,为一个测试步骤。在这些测试步骤中,具体打开哪些页面,输入哪些信息,点击哪些按钮都清晰的表达了出来。

打开  app activity ".Settings" , app package com.android.settings
2. 点击 Battery
3. 获取 Battery 的电量
4. 返回上一级页面
通过 AGENT 执行功能测试用例。

大模型本身是不具备任何执行能力或生成能力的,它只会”思考“,但是通过 LangChain 的 Agent,可以将一些”工具”外挂到大模型身上。

那么如果要执行这些功能测试用例,大模型就需要具备执行用例的能力。而我们要做的事情,就是将 tools(工具包),外挂到大模型上面。

相关知识点:Agent、 tools

  • 封装好 App 的底层工具

from time import sleep
from appium import webdriver
from appium.options.android import UiAutomator2Options
from appium.webdriver.common.appiumby import AppiumBy

class AppAutoFramework:
    def __init__(self):
        self.driver = None
        self.element = None

    def init(self, app_activity, app_package):
        if not self.driver:
            # 设置 capability
            caps = {
   
                # 设置 app 安装的平台(Android、iOS)
                "platformName": "android",
                # 设置 appium 驱动
                "appium:automationName": "uiautomator2",
                # 设置设备名称
                "appium:deviceName": "emulator-5554",
                "appium:noReset": True,
                # 设置以下两个参数来控制启动app和关闭掉app
                "appium:forceAppLaunch" : True,
                "appium:shouldTerminateApp" : True,
                # 设置 app 的包名
            "appium:appPackage": app_package,
                # 设置 app 启动页
            "appium:appActivity": app_activity
            }
            # 初始化 driver
            self.driver = webdriver.Remote(
                "http://localhost:4723",
                options=UiAutomator2Options().load_capabilities(caps)
            )
            self.driver.implicitly_wait(5)
        return self.source()

    def source(self):
        return self.driver.page_source

    def find(self, locator):
        print(f"find xpath = {locator}")
        element = self.driver.find_element(by=AppiumBy.XPATH, value=locator)
        self.element = element
        return self.source()

    def click(self):
        self.element.click()
        sleep(1)
        return self.source()

    def send_keys(self, text):
        self.element.clear()
        self.element.send_keys(text)
        return self.source()

    def back(self):
        self.driver.back()
        return self.source()
  • 创建工具以及其说明,并且将工具绑定到工具包中

import time

from langchain_core.tools import tool

app = AppAutoFramework()


@tool
def init(app_activity, app_package):
    """
    打开app的安装包,并返回app的resource
    """
    return app.init(app_activity, app_package)


@tool
def find(xpath: str):
    """通过xpath定位元素"""
    return app.find(xpath)


@tool
def click(xpath: str = None):
    """以xpath的方式定位网页元素后点击"""
    app.find(xpath)
    return app.click()


@tool
def send_keys(xpath, text):
    """定位到xpath指定的元素,并输入text"""
    app.find(xpath)
    return app.send_keys(text)


@tool
def sleep(seconds: int):
    """等待指定的秒数"""
    time.sleep(seconds)


@tool
def back():
    """
    返回上一级界面
    :return:
    """
    app.back()


tools = [init, find, click, send_keys, sleep, back]
记录执行步骤

在 Agent 的配置中,可以要求 agent 将所有的执行步骤记录下来。而执行记录会记录在返回结果中的intermediate_steps中。

而我们则需要将这些步骤取出来,按照我们的需求记录下来。


# 获取执行结果
import json
from langchain import hub
from langchain.agents import create_structured_chat_agent, AgentExecutor
from langchain_core.agents import AgentAction
from langchain_openai import ChatOpenAI

from app.appium_tools import tools

prompt = hub.pull("hwchase17/structured-chat-agent")
llm = ChatOpenAI()
app_agent = create_structured_chat_agent(llm, tools, prompt)
# Create an agent executor by passing in the agent and tools
app_agent_executor = AgentExecutor(
    agent=app_agent, tools=tools,
    verbose=True,
    return_intermediate_steps=True,
    handle_parsing_errors=True)

query = """
你是一个自动化测试工程师,接下来需要根据测试步骤,
每一步如果定位都是根据上一步的返回的html操作完成
执行对应的测试用例,测试步骤如下
1. 打开  app activity ".Settings" , app package com.android.settings
2. 点击 Battery
3. 获取 Battery 的电量
4. 返回上一级页面
"""

def execute_result(_):
    # 获取执行结果
    r = app_agent_executor.invoke({
   "input": query})
    # 获取执行记录
    steps = r["intermediate_steps"]
    steps_info = []
    # 遍历执行步骤,获取每一步的执行步骤以及输入的信息。
    for step in steps:
        action = step[0]
        if isinstance(action, AgentAction):
            steps_info.append({
   'tool': action.tool, 'input': action.tool_input})
    return json.dumps(steps_info)


if __name__ == '__main__':
    print(execute_result(""))
生成自动化测试用例。

拥有执行步骤之后,可以将执行步骤传递给大模型,然后让大模型根据执行步骤直接生成 web 自动化测试用例。


prompt_testcase = PromptTemplate.from_template("""
你是一个app自动化测试工程师,主要应用的技术栈为pytest + appium。
以下为app自动化测试的测试步骤,测试步骤由json结构体描述

{step}

{input}

""")

chain = (
        RunnablePassthrough.
        assign(step=execute_result)
        | prompt_testcase
        | llm
        | StrOutputParser()
)

print(chain.invoke({
   "input": "请根据以上的信息,给出对应的app自动化测试的代码"}))

执行效果

最后,自动生成的 App 自动化测试用例效果如下:

image.png

总结

  1. App 自动化测试用例生成工具需求说明。
  2. 如何通过 LangChain 实现 App 自动化测试用例生成工具。
相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
15天前
|
Java 测试技术 数据安全/隐私保护
软件测试中的自动化策略与工具应用
在软件开发的快速迭代中,自动化测试以其高效、稳定的特点成为了质量保证的重要手段。本文将深入探讨自动化测试的核心概念、常见工具的应用,以及如何设计有效的自动化测试策略,旨在为读者提供一套完整的自动化测试解决方案,帮助团队提升测试效率和软件质量。
|
8天前
|
Web App开发 IDE 测试技术
Selenium:强大的 Web 自动化测试工具
Selenium 是一款强大的 Web 自动化测试工具,包括 Selenium IDE、WebDriver 和 Grid 三大组件,支持多种编程语言和跨平台操作。它能有效提高测试效率,解决跨浏览器兼容性问题,进行性能测试和数据驱动测试,尽管存在学习曲线较陡、不稳定等缺点,但其优势明显,是自动化测试领域的首选工具。
79 17
Selenium:强大的 Web 自动化测试工具
|
14天前
|
运维 Kubernetes Devops
自动化运维:从脚本到工具的演进之旅
在数字化浪潮中,自动化运维成为提升效率、保障系统稳定的关键。本文将探索自动化运维的发展脉络,从基础的Shell脚本编写到复杂的自动化工具应用,揭示这一技术变革如何重塑IT运维领域。我们将通过实际案例,展示自动化运维在简化工作流程、提高响应速度和降低人为错误中的重要作用。无论你是初学者还是资深专家,这篇文章都将为你提供宝贵的洞见和实用的技巧。
|
1月前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
88 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
23天前
|
机器学习/深度学习 人工智能 运维
自动化运维之路:从脚本到工具的演进
在IT运维领域,效率和准确性是衡量工作成效的关键指标。随着技术的发展,自动化运维逐渐成为提升这两个指标的重要手段。本文将带领读者了解自动化运维的演变历程,从最初的简单脚本编写到现今复杂的自动化工具应用,展示如何通过技术提升运维效率。文章不仅介绍理论和实践案例,还提供了代码示例,帮助读者理解自动化运维的实际应用场景。
|
26天前
|
JavaScript 前端开发 开发者
探索 DrissionPage: 强大的Python网页自动化工具
DrissionPage 是一个基于 Python 的网页自动化工具,结合了浏览器自动化的便利性和 requests 库的高效率。它提供三种页面对象:ChromiumPage、WebPage 和 SessionPage,分别适用于不同的使用场景,帮助开发者高效完成网页自动化任务。
107 4
|
1月前
|
安全 前端开发 测试技术
如何选择合适的自动化安全测试工具
选择合适的自动化安全测试工具需考虑多个因素,包括项目需求、测试目标、系统类型和技术栈,工具的功能特性、市场评价、成本和许可,以及集成性、误报率、社区支持、易用性和安全性。综合评估这些因素,可确保所选工具满足项目需求和团队能力。
|
1月前
|
运维 Ubuntu 应用服务中间件
自动化运维工具Ansible的实战应用
【10月更文挑战第36天】在现代IT基础设施管理中,自动化运维已成为提升效率、减少人为错误的关键手段。本文通过介绍Ansible这一流行的自动化工具,旨在揭示其在简化日常运维任务中的实际应用价值。文章将围绕Ansible的核心概念、安装配置以及具体使用案例展开,帮助读者构建起自动化运维的初步认识,并激发对更深入内容的学习兴趣。
52 4
|
1月前
|
运维 监控 数据安全/隐私保护
自动化运维工具的设计与实现
【10月更文挑战第34天】在现代IT基础设施管理中,自动化运维工具扮演着至关重要的角色。它们不仅提高了运维效率,还确保了服务的连续性和稳定性。本文将深入探讨如何设计并实现一个自动化运维工具,从需求分析到功能实现,再到最终的测试与部署。我们将通过一个简单的代码示例来展示如何自动执行常见的运维任务,如日志清理和性能监控。文章旨在为读者提供一套完整的方法论,以便他们能够构建自己的自动化运维解决方案。
|
2月前
|
JavaScript 前端开发 搜索推荐
Gulp:构建自动化与任务管理的强大工具
【10月更文挑战第13天】Gulp:构建自动化与任务管理的强大工具
82 0

热门文章

最新文章