C语言 多线程编程(1) 初识线程和条件变量

简介: 本文档详细介绍了多线程的概念、相关命令及线程的操作方法。首先解释了线程的定义及其与进程的关系,接着对比了线程与进程的区别。随后介绍了如何在 Linux 系统中使用 `pidstat`、`top` 和 `ps` 命令查看线程信息。文档还探讨了多进程和多线程模式各自的优缺点及适用场景,并详细讲解了如何使用 POSIX 线程库创建、退出、等待和取消线程。此外,还介绍了线程分离的概念和方法,并提供了多个示例代码帮助理解。最后,深入探讨了线程间的通讯机制、互斥锁和条件变量的使用,通过具体示例展示了如何实现生产者与消费者的同步模型。

多线程

线程定义

线程是进程中的⼀个执⾏单元,

负责当前进程中程序的执⾏,

⼀个进程中⾄少有⼀个线程

⼀个进程中是可以有多个线程

多个线程共享同一个进程的所有资源,每个线程参与操作系统的统一调度

可以简单理解成 进程 = 内存资源 + 主线程 + 子线程 +..

线程与进程

联系比较紧密的任务,在并发时,优先选择多线程,任务联系不紧密,比较独立的任务,建议选择多进程;

  • 进程:操作系统分配资源的基本单位,是资源分配的最小单位,是程序的执行和调度单位,是程序的运行实例。
  • 线程:是CPU调度和分派的基本单位,是CPU执行的最小单位,是程序执行流的最小单元,是程序执行的最小单位。

线程与进程区别:

  • 内存空间
    • 一个进程中多个线程共享同一个内存空间
    • 多个进程拥有独立的内存空间
  • 进程/线程间通讯
    • 线程间通讯方式简单
    • 进程间通讯方式复杂

线程资源

  • 共享进程的资源
    • 同一块地址空间
    • 文件描述符表
    • 每种信号的处理方式
    • 当前工作目录
    • 用户id和组id
  • 独有资源
    • 线程栈
    • 每个线程都有私有的上下文信息
    • 线程id
    • 寄存器的值
    • errno值
    • 信号屏蔽字以及调度优先级

线程相关命令

在 Linux 系统有很多命令可以查看进程,包括 pidstat 、top 、ps ,可以查看进程,也可以查看一个
进程下的线程

pidstat 命令

ubuntu 下需要安装 sysstat 工具之后,可以支持 pidstat
sudo apt install sysstat

选项

-t : 显示指定进程所关联的线程

-p : 指定 进程 pid

示例

查看进程 12345 所关联的线程

sudo pidstat -t -p 12345

查看所有进程所关联的线程

sudo pidstat -t

查看进程 12345 所关联的线程,每隔 1 秒输出一次

sudo pidstat -t -p 12345 1

查看所有进程所关联的线程,每隔 1 秒输出一次

sudo pidstat -t 1

top 命令

top 命令查看某一个进程下的线程,需要用到 -H 选项在结合 -p 指定 pid

选项

-H : 显示线程信息

-p : 指定 进程 pid

示例

查看进程 12345 所关联的线程

sudo top -H -p 12345

查看所有进程所关联的线程

sudo top -H

ps 命令

ps 命令结合 -T 选项就可以查看某个进程下所有线程

选项

-T : 显示线程信息

-p : 指定 进程 pid

示例

查看进程 12345 所关联的线程

sudo ps -T -p 12345

查看所有进程所关联的线程

sudo ps -T

常见的并发方案

1. 多进程模式

多进程模式下,每个进程负责不同的任务,互不干扰,各自运行在不同的内存空间,互不影响。

  • 优点:
    • 进程的地址空间独立,一旦某个进程出现异常,不会影响其他进程
  • 缺点:
    • 每个进程都需要分配独立的内存空间,创建进程的代价高,占用更多的内存
    • 进程间协同,进程间通讯比较复杂
  • 适用场景:
    • 多个任务联系不是非常紧密,可以采用多进程模式
    • 任务之间没有依赖关系,可以采用多进程模式

2. 多线程模式

多线程模式下,一个进程内可以有多个线程,共享同一份内存空间,线程之间可以直接通信。

  • 优点:
    • 线程间通信简单
    • 同一个进程的多个线程可以共享资源,可以提高资源利用率
  • 缺点:
    • 线程没有独立的进程地址空间,主线程退出后,其他线程也会退出
    • 线程切换和调度需要消耗资源,线程数量过多,会消耗系统资源
    • 线程间同步复杂,需要考虑线程安全问题
  • 适用场景:
    • 任务之间有依赖关系,可以采用多线程模式
    • 任务之间通信比较频繁,可以采用多线程模式

创建线程

1. pthread_create()

pthread_create() 用来创建线程,创建成功后,线程就开始运行,
pthread_create() 调用成功后,会返回 0,否则返回错误码。

函数头文件:

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
                   void *(*start_routine) (void *), void *arg);

参数说明:

  • thread: 指向 pthread_t 类型的指针,用来存储线程的 ID。
  • attr: 线程属性,可以为 NULL,表示使用默认属性。
    • 线程属性:
  • start_routine: 线程的入口函数.
  • start_routine: 线程的入口函数.
  • arg: 传递给线程入口函数的参数。没有参数可以传递 NULL。

返回值:

  • 0: 创建成功。
  • 失败: 返回错误码。(并非重置errno的值)
  • EAGAIN: 资源不足,创建线程失败。
  • EINVAL: 参数无效。
  • ENOMEM: 内存不足,创建线程失败。

注意:

  • 一旦子线程创建成功,则会被独立调度执行,并且与其他线程 并发执行
  • 在编译时需要链接 -lpthread 库。
  • 线程的入口函数必须声明为 void * 类型的函数指针。
  • 线程的入口函数的参数类型必须与 pthread_create() 函数的 arg 参数类型一致。

示例:创建一个线程

// todo : 创建一个线程,并在线程中打印出“Hello, World!”
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>

// 线程函数
//@param arg 线程函数参数
void * print_hello(void *arg) {
   
   
    printf("%s\n",(char *)arg);
}

int main() {
   
   
    pthread_t tid; //? typedef unsigned long int pthread_t;
    // 创建线程
    //@param tid 线程ID
    //@param attr 线程属性
    //@param start_routine 线程函数
    //@param arg 线程函数参数
    int ret = pthread_create(&tid, NULL,print_hello, "Hello, World!");
    if (ret!= 0){
   
   
        printf("pthread_create error!\n");
        return 1;
    }
    sleep(1); // 等待线程执行完毕
    return 0;
}

2. pthread_exit() 退出线程

pthread_exit() 用来退出线程,线程执行完毕后,会自动调用 pthread_exit() 退出。

函数头文件:

#include <pthread.h>

void pthread_exit(void *retval);

参数说明:

  • retval: 线程退出时返回的值。
  • 线程函数执行完毕后,会自动调用 pthread_exit() 退出。

3. pthread_join() 等待线程结束

pthread_join() 用来等待线程结束,
调用 pthread_join() 后,当前线程会被阻塞,直到线程结束。

函数头文件:

#include <pthread.h>

int pthread_join(pthread_t thread, void **retval);

参数说明:

  • thread: 线程 ID。
  • retval: 指向线程返回值的指针,用来存储线程退出时返回的值。(二级指针)

返回值:

  • 0: 等待成功。
  • EINVAL: 参数无效。
  • ESRCH: 线程 ID 不存在。
  • EDEADLK: 线程处于死锁状态。

示例:

// todo : 创建一个线程,并在线程中打印出“Hello, World!”
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>

// 线程函数
//@param arg 线程函数参数
void * print_hello(void *arg) {
   
   
    sleep(1); // 休眠1秒
    printf("%s\n",(char *)arg);
    pthread_exit(NULL); // 线程退出
}

int main() {
   
   
    pthread_t tid; //? typedef unsigned long int pthread_t;
    // 创建线程
    //* @param tid 线程ID
    //* @param attr 线程属性
    //* @param start_routine 线程函数
    //* @param arg 线程函数参数
    int ret = pthread_create(&tid, NULL,print_hello, "Hello, World!");
    if (ret!= 0){
        printf("pthread_create error!\n");
        return 1;
    }

    printf("等待线程结束...\n");
    // 等待线程结束
    //* @param thread 线程ID
    //* @param status 线程退出状态
    pthread_join(tid, NULL);

    return 0;
}
等待线程结束...
Hello, World!

pthread_cancel() 取消线程

pthread_cancel() 用来取消线程,
调用 pthread_cancel() 后,线程会被取消,不会被执行。
目标线程是否以及何时相应取决于 state 和 type 两个参数。

设置 state 使用 pthread_setcancelstate() 函数,设置 type 使用 pthread_setcanceltype() 函数。

函数头文件:

#include <pthread.h>

int pthread_cancel(pthread_t thread);

参数说明:

  • thread: 线程 ID。

返回值:

  • 0: 取消成功。
  • 失败: 返回错误码

pthread_setcancelstate() 函数

pthread_setcancelstate() 函数用来设置线程取消状态。

函数头文件:

#include <pthread.h>

int pthread_setcancelstate(int state, int *oldstate);

相关宏定义:

PTHREAD_CANCEL_DISABLE: 禁止取消
PTHREAD_CANCEL_ENABLE: 启用取消 -- 默认
enum
{
   
   
  PTHREAD_CANCEL_ENABLE,
#define PTHREAD_CANCEL_ENABLE   PTHREAD_CANCEL_ENABLE
  PTHREAD_CANCEL_DISABLE
#define PTHREAD_CANCEL_DISABLE  PTHREAD_CANCEL_DISABLE
};

参数说明:

  • state: 线程取消状态。
  • oldstate: 指向原来的线程取消状态的指针。

返回值:

  • 0: 设置成功。
  • 失败: 返回错误码。

pthread_setcanceltype() 函数

pthread_setcanceltype() 函数用来设置线程取消类型。

函数头文件:

#include <pthread.h>

int pthread_setcanceltype(int type, int *oldtype);
相关宏定义:

PTHREAD_CANCEL_ASYNCHRONOUS: 立即取消
PTHREAD_CANCEL_DEFERRED: 延迟取消 -- 默认

enum
{
   
   
  PTHREAD_CANCEL_DEFERRED,
#define PTHREAD_CANCEL_DEFERRED    PTHREAD_CANCEL_DEFERRED
  PTHREAD_CANCEL_ASYNCHRONOUS
#define PTHREAD_CANCEL_ASYNCHRONOUS    PTHREAD_CANCEL_ASYNCHRONOUS
};

参数说明:

  • type: 线程取消类型。
  • oldtype: 指向原来的线程取消类型的指针。

返回值:

  • 0: 设置成功。
  • 失败: 返回错误码。

线程分离

线程分离

线程分为可结合的与可分离的

pthread_detach()函数

pthread_detach()函数用来将线程分离,使得线程在创建后不会等待其结束,而是由操作系统自行回收资源。

参数:

  • thread: 线程 ID。

返回值:

  • 0: 分离成功。
  • 失败: 返回错误码。(并非重置errno的值)

线程结合与分离的区别

  • 可结合

    • 可结合的线程能够被其他线程收回其资源和杀死;在被其他线程回收之前,它的存储器资源(如栈)是不释放的。
    • 线程创建的默认状态为 可结合的,可以由其他线程调用 pthread_join 函数等待子线程退出并释放相关资源
  • 可分离

    • 不能被其他线程回收或者杀死的,该线程的资源在它终止时由系统来释放。
// todo : 创建一个线程,并在线程中打印出“Hello, World!”
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>

// 线程函数
//@param arg 线程函数参数
void * print_hello(void *arg) {
   
   
    //线程分离的第二种方式
    //pthread_detach(pthread_self());

    sleep(1); // 休眠1秒
    printf("%s\n",(char *)arg);
    pthread_exit(NULL); // 线程退出
}

int main() {
   
   
    pthread_t tid; //? typedef unsigned long int pthread_t;
    // 创建线程
    //* @param tid 线程ID
    //* @param attr 线程属性
    //* @param start_routine 线程函数
    //* @param arg 线程函数参数
    int ret = pthread_create(&tid, NULL,print_hello, "Hello, World!");
    if (ret!= 0){
        printf("pthread_create error!\n");
        return 1;
    }

    printf("等待线程结束...\n");
    // 等待线程结束
    //* @param thread 线程ID
    //* @param status 线程退出状态
    //pthread_join(tid, NULL);//! 阻塞等待线程结束,直到线程结束后才继续往下执行

    //线程分离
    pthread_detach(tid); //! 分离线程,不用等待线程结束后才退出程序,该线程的资源在它终止时由系统来释放。

    printf("主线程结束\n");
    return 0;
}

创建多个线程

示例 1:创建多个线程执行不同的任务

// todo : 创建多个线程,执行不同的任务
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>

// 线程函数
//@param arg 线程函数参数
void * print_hello_A(void *arg) {
   
   
    sleep(1); // 休眠1秒
    printf("%s\n",(char *)arg);
    pthread_exit(NULL); // 线程退出
}
// 线程函数
//@param arg 线程函数参数
void * print_hello_B(void *arg) {
   
   
    sleep(2); // 休眠2秒
    printf("%s\n",(char *)arg);
    pthread_exit(NULL); // 线程退出
}


int main() {
   
   
    pthread_t tidA; //? 存储线程ID  typedef unsigned long int pthread_t;
    pthread_t tidB;
    // 创建线程
    //* @param tid 线程ID
    //* @param attr 线程属性
    //* @param start_routine 线程函数
    //* @param arg 线程函数参数
    int retA = pthread_create(&tidA, NULL,print_hello_A, "A_ Hello, World!");
    if (retA!= 0){
        printf("pthread_create error!\n");
        return 1;
    }

    int retB = pthread_create(&tidB, NULL,print_hello_B, "B_ Hello, World!");
    if (retB!= 0){
        printf("pthread_create error!\n");
        return 1;
    }

    printf("等待线程结束...\n");
    // 等待线程结束
    //* @param thread 线程ID
    //* @param status 线程退出状态
    pthread_join(tidA, NULL);//! 阻塞等待线程结束,直到线程结束后才继续往下执行
    pthread_join(tidB, NULL);
    printf("主线程结束\n");
    return 0;
}

示例 2:创建多个线程执行相同的任务

// todo : 创建多个线程,执行相同任务
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
//? 两个线程执行相同任务,对函数中的值修改了,会不会影响到其他线程的执行?
//! 在多线程编程中,如果多个线程执行相同的任务并且对共享资源进行修改,可能会影响到其他线程的执行。
//! 这是因为多个线程共享相同的内存空间,对共享资源的修改可能会导致竞态条件(race condition),
//! 从而导致不可预测的行为。
//! print_hello函数中的变量i是局部变量,每个线程都会有自己的i副本,因此对i的修改不会影响到其他线程。
//! 但是,如果涉及到共享资源(例如全局变量或静态变量),就需要考虑线程同步的问题,以避免竞态条件。


//*局部变量:每个线程都有自己的栈空间,因此局部变量是线程私有的,不会影响到其他线程。
//*共享资源:如果多个线程访问和修改同一个全局变量或静态变量,就需要使用同步机制(如互斥锁、信号量等)来确保线程安全。
//Linux:在Linux系统中,默认的线程栈大小通常是8MB。可以使用ulimit -s命令查看和修改当前用户的线程栈大小。例如,ulimit -s 1024将线程栈大小设置为1MB。
//Windows:在Windows系统中,默认的线程栈大小是1MB。可以通过编译器选项或在创建线程时指定栈大小来修改。

// 线程函数
//@param arg 线程函数参数
void * print_hello(void *arg) {

    for (char i = 'a'; i < 'z' ; ++i) {
        printf("%c\n", i);
        sleep(1); // 休眠1秒
    }
    pthread_exit(NULL); // 线程退出
}

int main() {
    pthread_t tid[2]={0}; //? 存储线程ID的数组  typedef unsigned long int pthread_t;


    for (int i = 0; i < 2; ++i) {
        // 创建线程
        //* @param tid 线程ID
        //* @param attr 线程属性
        //* @param start_routine 线程函数
        //* @param arg 线程函数参数
        int retA = pthread_create(&tid[i], NULL,print_hello, NULL);
        if (retA!= 0){
            printf("pthread_create error!\n");
            return 1;
        }
    }

    printf("等待线程结束...\n");
    // 等待线程结束
    //* @param thread 线程ID
    //* @param status 线程退出状态
    pthread_join(tid[0], NULL);//! 阻塞等待线程结束,直到线程结束后才继续往下执行
    pthread_join(tid[1], NULL);


    printf("主线程结束\n");
    return 0;
}

线程间的通讯

进程间的其他通讯同样适用于线程间的通讯。

主线程向子线程传递参数

通过pthread_create()函数创建子线程时,pthread_create()的第四个参数是传递给子线程的函数的参数。

子线程向主线程传递参数

通过pthread_exit()函数退出子线程时,可以向主线程传递参数。

void pth_exit(void *retval);

通过pthread_join()函数等待子线程结束时,获取子线程的返回参数.

int pthread_join (pthread_t __th, void **__thread_return);
//二级指针获取到了pthread_exit()函数参数指针的指向地址,通过该地址可以获取到子线程的返回参数。

示例:

// todo : 线程直接通讯,子线程向父线程传参
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>

// 线程函数
//@param arg 线程函数参数
void * print_hello(void *arg) {
   
   
    printf("子线程开始,结束之时传递参数100的地址\n");

    sleep(1); // 休眠1秒
    //! int num=100;//局部变量,函数结束释放内存
    static int num=100;//* 静态局部变量,函数结束不释放内存,延长生命周期
    pthread_exit(&num); // 线程退出
}



int main() {
    pthread_t tid; //? 存储线程ID  typedef unsigned long int pthread_t;
    // 创建线程
    //* @param tid 线程ID
    //* @param attr 线程属性
    //* @param start_routine 线程函数
    //* @param arg 线程函数参数
    int retA = pthread_create(&tid, NULL,print_hello, NULL);
    if (retA!= 0){
        printf("pthread_create error!\n");
        return 1;
    }



    printf("等待线程结束...\n");
    void* num;//获取子进程传递的参数,num指向了子进程传递的参数
    // 等待线程结束
    //* @param thread 线程ID
    //* @param status 线程退出状态
    pthread_join(tid, (void **)&num);//! 阻塞等待线程结束,直到线程结束后才继续往下执行
    printf("子线程结束,传递的参数为%d\n",*(int*)num);
    printf("主线程结束\n");
    return 0;
}

线程互斥锁

线程互斥锁

互斥锁(Mutex)是一种同步机制,用来控制对共享资源的访问。

线程的主要优势在于,能够通过全局变量来共享信息, 不过这种便捷的共享是有代价的:

必须确保多个线程不会同时修改同⼀变量

某⼀线程不会读取正由其他线程修改的变量, 实际就是不能让两个线程同时对临界区进⾏访问

互斥锁的原理

互斥锁的原理是,当一个线程试图进入一个互斥区时,如果该互斥区已经被其他线程占用,则该线程将被阻塞,直到互斥区被释放。

本质上是一个pthread_mutex_t类型的变量,它包含一个整数值,用来表示互斥区的状态。
当值为1时,则表示当前临界资源可以竞争访问,得到互斥锁的线程可以进入临界区。此时值为0,其他线程只能等待.
当值为0时,则表示当前临界资源被其他线程占用,不能进入临界区,只能等待.

互斥锁的特点

typedef union
{
   
   
  struct __pthread_mutex_s __data; // 互斥锁的结构体
  char __size[__SIZEOF_PTHREAD_MUTEX_T];// 互斥锁的大小
  long int __align;// 互斥锁的对齐
} pthread_mutex_t;
  • 互斥锁是⼀个 pthread_mutex_t 型的变量, 就代表⼀个 互斥锁
  • 如果两个线程访问的是同⼀个 pthread_mutex_t 变量,那么它们访问了同⼀个互斥锁
  • 对应的变量定义在 pthreadtypes.h 头⽂件中, 是⼀个共⽤体中包含⼀个结构体

互斥锁的使用

线程互斥锁的初始化⽅式主要分为两种:

静态初始化

  • 定义 pthread_mutex_t 类型的变量,然后对其初始化为 PTHREAD_MUTEX_INITIALIZER.
    pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER
    

    动态初始化

    动态初始化动态初始化主要涉及两个函数 pthread_mutex_init 函数 与pthread_mutex_destroy 函数

pthread_mutex_init()函数

用来初始化互斥锁,它接受两个参数: 互斥锁的地址和互斥锁的属性。

函数头文件:

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr);

参数说明:

  • mutex: 指向 pthread_mutex_t 类型的指针,用来存储互斥锁的地址。
  • attr: 互斥锁的属性,可以为 NULL,表示使用默认属性。

返回值:

  • 0: 初始化成功。
  • 失败返回错误码。

pthread_mutex_destroy()函数

用来销毁互斥锁,它接受一个参数: 互斥锁的地址。

函数头文件:

#include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t *mutex);

参数说明:

  • mutex: 指向 pthread_mutex_t 类型的指针,用来存储互斥锁的地址。

返回值:

  • 0: 销毁成功。
  • 失败返回错误码。

示例:

// todo :  互斥锁;创建两个线程,分别对全局变量进⾏ +1 操作
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>


static int global = 0;// 全局变量

//静态初始化互斥锁
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;// 互斥锁
//动态初始化互斥锁
pthread_mutex_t mut;// 互斥锁

// 线程函数
//@param arg 线程函数参数
void * print_hello(void *arg) {
   
   
    printf("子线程开始\n");

    int loops = *(int *)arg;
    int i,tmp = 0;
    for (i = 0;i < loops;i++){
   
   
        pthread_mutex_lock(&mut);// 加锁
        printf("子线程%d,global=%d\n",i,global);
        tmp = global;
        tmp++;
        global = tmp;
        pthread_mutex_unlock(&mut);// 解锁
    }
    printf("子线程结束\n");
    pthread_exit(NULL); // 线程退出
}



int main() {
   
   

    // 动态初始化互斥锁
    //* @param mutex 互斥锁
    //* @param attr 互斥锁属性 NULL 是默认属性
    int r= pthread_mutex_init(&mut,NULL);
    if (r!= 0){
        printf("pthread_mutex_init error!\n");
        return 1;
    }

    pthread_t tid[2]={0}; //? 存储线程ID  typedef unsigned long int pthread_t;
    int arg=20;
    for (int i = 0; i < 2; i++){
        // 创建线程
        //* @param tid 线程ID
        //* @param attr 线程属性
        //* @param start_routine 线程函数
        //* @param arg 线程函数参数
        int retA = pthread_create(&tid[i], NULL,print_hello, &arg);
        if (retA!= 0){
            printf("pthread_create error!\n");
            return 1;
        }
    }




    printf("等待线程结束...\n");
    // 等待线程结束
    //* @param thread 线程ID
    //* @param status 线程退出状态
    pthread_join(tid[0],NULL );//! 阻塞等待线程结束,直到线程结束后才继续往下执行
    pthread_join(tid[1],NULL );

    printf("%d\n",global);
    printf("主线程结束\n");

    // 销毁动态创建的互斥锁
    //* @param mutex 互斥锁
    pthread_mutex_destroy(&mut);// 销毁互斥锁

    return 0;
}

线程同步

线程同步 : 是指在互斥的基础上(⼤多数情况),通过其它机制实现访问者对 资源的有序访问.

条件变量 : 线程库提供的专⻔针对线程同步的机制

线程同步⽐较典型的应⽤场合就是 ⽣产者与消费者

⽣产者与消费者问题

在这个模型中, 分为 ⽣产者线程 与 消费者线程, 通过这个线程来模拟多个线程同步的过程.

在这个模型中, 需要以下组件:

  • 仓库 : ⽤于存储产品, ⼀般作为共享资源
  • ⽣产者线程 : ⽤于⽣产产品
  • 消费者线程 : ⽤于消费产品

原理:

当仓库没有产品时, 则消费者线程需要等待, 直到有产品时才能消费

当仓库已经装满产品时, 则⽣产者线程需要等待, 直到消费者线程消费产品之后

示例 基于互斥锁实现⽣产者与消费者模型

主线程为消费者

n 个⼦线程作为⽣产者

// todo :  基于互斥锁实现⽣产者与消费者模型主线程为消费者,n 个⼦线程作为⽣产者
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
static int n = 0; // 产品数量
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;// 互斥锁

//生产者执行函数
void * dofunc(void *arg) {
   
   
    int arg1 = *(int*)arg;
    for (int i = 0; i <arg1; i++) {
   
   
        //获取互斥锁
        pthread_mutex_lock(&mutex);
        //生产产品
        printf("生产者%ld生产了%d个产品\n",pthread_self(),++n);//! pthread_self()返回当前线程ID
        //释放互斥锁
        pthread_mutex_unlock(&mutex);
        //休眠1秒
        sleep(1);
    }
    pthread_exit(NULL);
}


int main() {
   
   
    pthread_t tid[4]={
   
   0}; //? 存储线程ID  typedef unsigned long int pthread_t;
    int arr[4]={
   
   1,2,3,4};
    for (int i = 0; i < 4; i++) {
   
   
        // 创建线程
        //* @param tid 线程ID
        //* @param attr 线程属性
        //* @param start_routine 线程函数
        //* @param arg 线程函数参数
        int retA = pthread_create(&tid[i], NULL,dofunc,&arr[i] );
        if (retA!= 0){
            printf("pthread_create error!\n");
            return 1;
        }
    }
    //消费者执行

    for (int i = 0;i<10;i++) {
        //获取互斥锁
        pthread_mutex_lock(&mutex);
        while (n > 0){
            //消费产品
            printf("消费者%ld消费了1个产品:%d\n",pthread_self(),n--);
        }
        //释放互斥锁
        pthread_mutex_unlock(&mutex);
        //休眠1秒
        sleep(1);
    }


    printf("等待线程结束...\n");
    // 等待线程结束
    //* @param thread 线程ID
    //* @param status 线程退出状态
    pthread_join(tid[0],NULL );//! 阻塞等待线程结束,直到线程结束后才继续往下执行
    pthread_join(tid[1],NULL );
    pthread_join(tid[2],NULL );
    pthread_join(tid[3],NULL );

    return 0;
}

条件变量

条件变量是⼀种同步机制,它允许线程等待某个条件的⽬标满足后才继续运行。

条件变量的原理是,它包含一个互斥锁和一个等待队列。

互斥锁用于保护等待队列和条件变量。

img_48.png

条件变量初始化

条件变量的本质为 pthread_cond_t 类型

其他线程可以阻塞在这个条件变量上, 或者唤
醒阻塞在这个条件变量上的线程
typedef union
{
   
   
  struct __pthread_cond_s __data;
  char __size[__SIZEOF_PTHREAD_COND_T];
  __extension__ long long int __align;
} pthread_cond_t;

条件变量的初始化分为 静态初始化 与动态初始化

静态初始化

静态初始化的条件变量,需要先定义一个 pthread_cond_t 类型的变量,然后对其初始化为 PTHREAD_COND_INITIALIZER。

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

动态初始化 pthread_cond_init()

动态初始化的条件变量,需要先定义一个 pthread_cond_t 类型的变量,然后调用 pthread_cond_init 函数对其进行初始化。

函数头文件:

#include <pthread.h>

int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr);

参数说明:

  • cond: 指向 pthread_cond_t 类型的指针,用来存储条件变量的地址。
  • attr: 条件变量的属性,可以为 NULL,表示使用默认属性。

返回值:

  • 0: 初始化成功。
  • 失败返回错误码。

pthread_cond_destroy()

用来销毁条件变量,它接受一个参数: 条件变量的地址。

函数头文件:

#include <pthread.h>

int pthread_cond_destroy(pthread_cond_t *cond);

参数说明:

  • cond: 指向 pthread_cond_t 类型的指针,用来存储条件变量的地址。

返回值:

  • 0: 销毁成功。
  • 失败返回错误码。

条件变量的使用

条件变量的使用分为 等待 与 通知

等待 pthread_cond_wait()

等待函数 pthread_cond_wait() 接受三个参数: 条件变量的地址、互斥锁的地址、等待时间。

函数头文件:

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime);

参数说明:

  • cond: 指向 pthread_cond_t 类型的指针,用来存储条件变量的地址。
  • mutex: 指向 pthread_mutex_t 类型的指针,用来存储互斥锁的地址。
  • abstime: 超时时间,可以为 NULL,表示没有超时时间。

返回值:

  • 0: 等待成功。
  • 失败返回错误码。

通知 pthread_cond_signal()

通知函数
pthread_cond_signal() 接受一个参数: 条件变量的地址。

函数头文件:

#include <pthread.h>

int pthread_cond_signal(pthread_cond_t *cond);

参数说明:

  • cond: 指向 pthread_cond_t 类型的指针,用来存储条件变量的地址。

返回值:

  • 0: 通知成功。
  • 失败返回错误码。

通知所有 pthread_cond_broadcast()

通知所有函数
pthread_cond_broadcast() 接受一个参数: 条件变量的地址。

函数头文件:

#include <pthread.h>

int pthread_cond_broadcast(pthread_cond_t *cond);

参数说明:

  • cond: 指向 pthread_cond_t 类型的指针,用来存储条件变量的地址。

返回值:

  • 0: 通知成功。
  • 失败返回错误码。

示例 基于条件变量实现⽣产者与消费者模型

img_49.png

step 1 : 消费者线程判断消费条件是否满足 (仓库是否有产品),如果有产品可以消费,则可以正
常消费产品,然后解锁
step 2 : 当条件不能满足时 (仓库产品数量为 0),则调用 pthread_cond_wait 函数, 这个函数
            具体做的事情如下:
            在线程睡眠之前,对互斥锁解锁
            让线程进⼊到睡眠状态
            等待条件变量收到信号时 唤醒,该函数重新竞争锁,并获取锁后,函数返回 
step 3 :重新判断条件是否满足, 如果不满足,则继续调用 pthread_cond_wait 函数
step 4 : 唤醒后,从 pthread_cond_wait 返回,消费条件满足,则正常消费产品
step 5 : 释放锁,整个过程结束

为什么条件变量需要与互斥锁结合起来使⽤?

保护共享数据:

互斥锁用于保护共享数据,确保在同一时间只有一个线程可以访问和修改这些数据。

这样可以避免数据竞争和不一致的问题。

条件变量用于线程间的通信,通知其他线程某个条件已经满足。

但是,条件变量的操作本身并不提供对共享数据的保护,因此需要与互斥锁结合使用。

避免虚假唤醒:

条件变量的一个特性是可能会发生虚假唤醒(Spurious Wakeup),

即线程在没有明确通知的情况下被唤醒。为了避免这种情况导致的错误操作,

线程在唤醒后需要重新检查条件是否真正满足。

使用互斥锁可以确保在检查条件时,共享数据不会被其他线程修改,从而避免因虚假唤醒导致的错误。

确保通知的正确性:

当一个线程通过条件变量通知其他线程时,需要确保在通知之前共享数据已经更新完毕。

互斥锁可以保证这一点,确保在释放锁之前所有数据更新操作都已经完成。

同样,接收通知的线程在检查条件之前也需要持有互斥锁,以确保在检查条件时数据是稳定的。

实现复杂的同步模式:
结合使用互斥锁和条件变量可以实现更复杂的同步模式,如生产者-消费者问题、读者-写者问题等。互斥锁保护共享数据,条件变量用于线程间的协调和通信。

// todo :  条件变量
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <stdbool.h>
#include <stdlib.h>


static int number = 0;// 产品数量
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;// 互斥锁
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;// 条件变量

// 线程函数
//@param arg 线程函数参数
void * thread_handler(void *arg) {
   
   
    int cnt = atoi((char *)arg);// 获取线程参数
    int i,tmp;// 临时变量
    for(i = 0;i < cnt;i++){
   
   // 生产产品
        pthread_mutex_lock(&mtx);// 上锁
        printf("线程 [%ld] ⽣产⼀个产品,产品数量为:%d\n",pthread_self(),++number);
        pthread_mutex_unlock(&mtx);// 解锁

        //! 唤醒cond阻塞的线程
        //! @param cond 条件变量
        //pthread_cond_signal(&cond);//! 只能唤醒一个线程,如果有多个线程在等待,则只有一个线程会被唤醒
        //唤醒所有线程
        pthread_cond_broadcast(&cond);
    }
    pthread_exit((void *)0);// 线程退出
}



int main(int argc,char *argv[]) {
   
   

    pthread_t tid[argc-1];// 线程ID
    int i;
    int err;
    int total_of_produce = 0;// 总共生产的产品数量
    int total_of_consume = 0;// 总共消费的产品数量
    bool done = false;// 是否完成生产
    //循环创建线程
    for (i = 1;i < argc;i++){
   
   
        total_of_produce += atoi(argv[i]);// 计算总共需要生产的产品数量
        // 创建线程
        err = pthread_create(&tid[i-1],NULL,thread_handler,(void *)argv[i]);
        if (err != 0){
   
   
            perror("[ERROR] pthread_create(): ");
            exit(EXIT_FAILURE);
        }
    }
    //消费者
    for (;;){
   
   
        //*先获取锁,再进行条件变量的等待
        pthread_mutex_lock(&mtx);// 上锁

        //*while循环来判断条件,避免虚假唤醒
        while(number == 0) {// 等待生产者生产产品
            //! 等待条件变量
            //! @param cond 条件变量
            //! @param mtx 互斥锁
            //! 函数中会释放互斥锁,并阻塞线程,
            //! 直到条件变量被唤醒,再重新竞争互斥锁,获取互斥锁并继续执行
            pthread_cond_wait(&cond, &mtx);
        }
        while(number > 0){
            total_of_consume++;// 总共消费的产品数量
            printf("消费⼀个产品,产品数量为:%d\n",--number);// 消费产品
            done = total_of_consume >= total_of_produce;// 是否完成生产
        }
        pthread_mutex_unlock(&mtx);// 解锁

        if (done)// 是否完成生产
            break;
    }

    // 等待线程退出
    for(i = 0;i < argc-1;i++){
        pthread_join(tid[i],NULL);
    }

    return 0;

}
相关文章
|
3天前
|
设计模式 Java 开发者
Java多线程编程的陷阱与解决方案####
本文深入探讨了Java多线程编程中常见的问题及其解决策略。通过分析竞态条件、死锁、活锁等典型场景,并结合代码示例和实用技巧,帮助开发者有效避免这些陷阱,提升并发程序的稳定性和性能。 ####
|
6天前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
5天前
|
API Android开发 iOS开发
深入探索Android与iOS的多线程编程差异
在移动应用开发领域,多线程编程是提高应用性能和响应性的关键。本文将对比分析Android和iOS两大平台在多线程处理上的不同实现机制,探讨它们各自的优势与局限性,并通过实例展示如何在这两个平台上进行有效的多线程编程。通过深入了解这些差异,开发者可以更好地选择适合自己项目需求的技术和策略,从而优化应用的性能和用户体验。
|
10天前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
19天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####
|
16天前
|
监控 安全 Java
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin
|
19天前
|
Java UED
Java中的多线程编程基础与实践
【10月更文挑战第35天】在Java的世界中,多线程是提升应用性能和响应性的利器。本文将深入浅出地介绍如何在Java中创建和管理线程,以及如何利用同步机制确保数据一致性。我们将从简单的“Hello, World!”线程示例出发,逐步探索线程池的高效使用,并讨论常见的多线程问题。无论你是Java新手还是希望深化理解,这篇文章都将为你打开多线程的大门。
|
27天前
|
安全 程序员 API
|
20天前
|
安全 Java 编译器
Java多线程编程的陷阱与最佳实践####
【10月更文挑战第29天】 本文深入探讨了Java多线程编程中的常见陷阱,如竞态条件、死锁、内存一致性错误等,并通过实例分析揭示了这些陷阱的成因。同时,文章也分享了一系列最佳实践,包括使用volatile关键字、原子类、线程安全集合以及并发框架(如java.util.concurrent包下的工具类),帮助开发者有效避免多线程编程中的问题,提升应用的稳定性和性能。 ####
46 1
|
23天前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####