大地经纬度坐标与地心地固坐标的的转换
目录
1. 概述
要解决这个问题首先得理解地球椭球这个概念,这里直接用武汉大学《大地测量学基础》(孔详元、郭际明、刘宗全)的解释吧:
大地经纬度坐标系是地理坐标系的一种,也就是我们常说的经纬度坐标+高度。经纬度坐标用的虽然多,但是很多人并没有理解经纬度的几何意义:纬度是一种线面角度,是坐标点P的法线与赤道面的夹角(注意这个法线不一定经过球心);经度是面面角,是坐标点P所在的的子午面与本初子午面的夹角。这也是为什么经度范围是-180 ~ +180,纬度范围却是-90 ~ +90:
地心地固坐标系就是我们常用的笛卡尔空间直角坐标系了。这个坐标系以椭球球心为原点,本初子午面与赤道交线为X轴,赤道面上与X轴正交方向为Y轴,椭球的旋转轴(南北极直线)为Z轴。显然,这是个右手坐标系:
显然,两者都是表达的都是空间中某点P,只不过一个是经纬度坐标(BLH),一个是笛卡尔坐标(XYZ);两者是可以相互转换的。
2. 推导
2.1. BLH->XYZ
将P点所在的子午椭圆放在平面上,以圆心为坐标原点,建立平面直接坐标系:
对照地心地固坐标系,很容易得出:
⎧⎨⎩Z=yX=x⋅cosLY=x⋅sinL(1)(1){Z=yX=x⋅cosLY=x⋅sinL
那么,关键问题在于求子午面直角坐标系的x,y。过P点作原椭球的法线Pn,他与子午面直角坐标系X轴的夹角为B;过P点作子午椭圆的切线,它与X轴的夹角为(90°+B):
图1
根据椭圆的方程,位于椭圆的P点满足:
x2a2+y2b2=1(1.2)(1.2)x2a2+y2b2=1
对x求导,有:
dydx=−b2a2⋅xy(2)(2)dydx=−b2a2⋅xy
又根据解析几何可知,函数曲线(椭圆)某一点(就是P点)的倒数为该点切线的斜率,也就是正切值:
dydx=tan(90o+B)=−cotB(3)(3)dydx=tan(90o+B)=−cotB
联立公式(2)(3),可得:
y=x(1−e2)tanB(4)(4)y=x(1−e2)tanB
其中,e为椭圆第一偏心率:
e=−√a2−b2ae=−a2−b2a
令Pn的距离为N,那么显然有:
x=NcosB(4-2)(4-2)x=NcosB
根据(4)式可得:
y=N(1−e2)sinB(4-3)(4-3)y=N(1−e2)sinB
将其带入(1)式,可得到椭球上P点的坐标为:
⎧⎨⎩X=NcosBcosLY=NcosBsinLZ=N(1−e2)sinB(5)(5){X=NcosBcosLY=NcosBsinLZ=N(1−e2)sinB
那么唯一的未知量就是Pn的长度N了,将(4)式带入到椭圆方程式(1.2):
x2a2+x2(1−e2)2tan2Bb2=1x2a2+x2(1−e2)2tan2Bb2=1
化简,得:
x=acosB√1−e2sin2B(6)(6)x=acosB1−e2sin2B
联立式(5)式(6),得:
N=a√1−e2sin2B(6)(6)N=a1−e2sin2B
通过式(5)式(6),可以计算椭球上某一点的坐标。但这个点并不是我们真正要求的点,我们要求的点P(B,L,H)是椭球面沿法向量向上H高度的点:
P点在椭球面上的点为P0P0,那么根据矢量相加的性质,有:
P=P0+H⋅n(6)(6)P=P0+H⋅n
其中,P0P0也就是式(5),而n是P0P0在椭球面的法线单位矢量。
矢量在任意位置的方向都是一样的,那么我们可以假设存在一个单位球(球的半径为单位1),将法线单位矢量移动到球心位置,可得法线单位矢量为:
n=⎡⎢⎣cosBcosLcosBsinLsinB⎤⎥⎦(7)(7)n=[cosBcosLcosBsinLsinB]
因此有:
P=⎡⎢⎣XYZ⎤⎥⎦=⎡⎢⎣(N+H)cosBcosL(N+H)cosBsinL[N(1−e2)+H]sinB⎤⎥⎦(8)(8)P=[XYZ]=[(N+H)cosBcosL(N+H)cosBsinL[N(1−e2)+H]sinB]
其中:
N=a√1−e2sin2B(9)(9)N=a1−e2sin2B
2.2. XYZ->BLH
根据式(8),可知:
YX=(N+H)cosBsinL(N+H)cosBcosL=tanLYX=(N+H)cosBsinL(N+H)cosBcosL=tanL
因此有:
L=arctan(YX)(10)(10)L=arctan(YX)
不过纬度B就不是那么好算了,首先需要计算法线Pn在赤道两侧的长度。根据图1,有:
y=PQsinBy=PQsinB
与式(4-3)比较可得:
PQ=N(1−e2)PQ=N(1−e2)
显然,由于:
Pn=N=PQ+QnPn=N=PQ+Qn
有:
Qn=Ne2Qn=Ne2
接下来如下图所示,对图1做辅助线:
有:
⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩PP′′=ZOP′′=√x2+y2PP′′′=OKp=QKpsinB=Ne2sinBP′′P′′′=PP′′′+PP′′{PP″=ZOP″=x2+y2PP‴=OKp=QKpsinB=Ne2sinBP″P‴=PP‴+PP″
因而可得:
tanB=Z+Ne2sinB√x2+y2(11)(11)tanB=Z+Ne2sinBx2+y2
这个式子两边都有待定量B,需要用迭代法进行求值。具体可参看代码实现,初始的待定值可取tanB=z√x2+y2tanB=zx2+y2。
大地纬度B已知,那么求高度H就非常简单了,直接根据式(8)中的第三式逆推可得:
H=ZsinB−N(1−e2)(12)(12)H=ZsinB−N(1−e2)
汇总三式,可得:
⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩L=arctan(YX)tanB=Z+Ne2sinB√x2+y2H=ZsinB−N(1−e2){L=arctan(YX)tanB=Z+Ne2sinBx2+y2H=ZsinB−N(1−e2)
3. 实现
根据前面的推导过程,具体的C/C++代码实现如下:
#include <iostream> using namespace std; const double epsilon = 0.000000000000001; const double pi = 3.14159265358979323846; const double d2r = pi / 180; const double r2d = 180 / pi; const double a = 6378137.0; //椭球长半轴 const double f_inverse = 298.257223563; //扁率倒数 const double b = a - a / f_inverse; //const double b = 6356752.314245; //椭球短半轴 const double e = sqrt(a * a - b * b) / a; void Blh2Xyz(double &x, double &y, double &z) { double L = x * d2r; double B = y * d2r; double H = z; double N = a / sqrt(1 - e * e * sin(B) * sin(B)); x = (N + H) * cos(B) * cos(L); y = (N + H) * cos(B) * sin(L); z = (N * (1 - e * e) + H) * sin(B); } void Xyz2Blh(double &x, double &y, double &z) { double tmpX = x; double temY = y ; double temZ = z; double curB = 0; double N = 0; double calB = atan2(temZ, sqrt(tmpX * tmpX + temY * temY)); int counter = 0; while (abs(curB - calB) * r2d > epsilon && counter < 25) { curB = calB; N = a / sqrt(1 - e * e * sin(curB) * sin(curB)); calB = atan2(temZ + N * e * e * sin(curB), sqrt(tmpX * tmpX + temY * temY)); counter++; } x = atan2(temY, tmpX) * r2d; y = curB * r2d; z = temZ / sin(curB) - N * (1 - e * e); } int main() { double x = 113.6; double y = 38.8; double z = 100; printf("原大地经纬度坐标:%.10lf\t%.10lf\t%.10lf\n", x, y, z); Blh2Xyz(x, y, z); printf("地心地固直角坐标:%.10lf\t%.10lf\t%.10lf\n", x, y, z); Xyz2Blh(x, y, z); printf("转回大地经纬度坐标:%.10lf\t%.10lf\t%.10lf\n", x, y, z); }
其最关键的还是计算大地纬度B时的迭代过程,其余的计算都只是套公式。数值计算中的很多算法都是采用迭代趋近的方法来趋近一个最佳解。最后的运行结果如下:
4. 参考
分类: 大地测量学