【机器学习】准确率、精确率、召回率、误报率、漏报率概念及公式

简介: 机器学习评估指标中的准确率、精确率、召回率、误报率和漏报率等概念,并给出了这些指标的计算公式。

阳性(正)样例P和阴性(负)样例N,将正样本预测为正样本的为True positive(TP),正样本预测为负样本的为False negativ(FN),负样本预测为正样本的为False positive(FP),负样本预测为负样本的为True negative(TN)。所以有:
$$P = TP+FN \\\\ N =FP+TN $$
1、准(正)确率accuracy
反映分类器或者模型对整体样本判断正确的能力,即能将阳性(正)样本positive判定为positive和阴性(负)样本negative判定为negative的正确分类能力。值越大,性能performance越好
$$ACC = \frac{TP +TN}{TP+TN+FP+FN}$$

这里注意,在负样本占绝对多数的场景中,不能单纯追求准确率,因为将所有样本都判定为负样本,这种情况下准确率也是非常高的。
2、精确率precision
反映分类器或者模型正确预测正样本精度的能力,即预测的正样本中有多少是真实的正样本。值越大,性能performance越好
$$precision = \frac{TP}{TP+FP}$$

这里注意,单纯追求精确率,会造成分类器或者模型少预测为正样本,这时FP低,即精确率就会很高。
3、召回率recall,也称为真阳率、命中率(hit rate)
反映分类器或者模型正确预测正样本全度的能力,增加将正样本预测为正样本,即正样本被预测为正样本占总的正样本的比例。值越大,性能performance越好
$$recall =TPR= \frac{TP}{TP+FN} = \frac{TP}{P}$$
这里注意,单纯追求召回率,会造成分类器或者模型基本都预测为正样本,这时FN低,即召回率就会很高。
4、误报率false alarm,也称为假阳率、虚警率、误检率
反映分类器或者模型正确预测正样本纯度的能力,减少将负样本预测为正样本,即负样本被预测为正样本占总的负样本的比例。值越小,性能performance越好
$$falsealarm = FPR=\frac{FP}{FP+TN} =\frac{FP}{N}$$

5、漏报率miss rate,也称为漏警率、漏检率
反映分类器或者模型正确预测负样本纯度的能力,减少将正样本预测为负样本,即正样本被预测为负样本占总的正样本的比例。值越小,性能performance越好
$$missrate = FNR = \frac{FN}{TP+FN} = \frac{FN}{P}$$
6、特异度specificity
反映分类器或者模型正确预测负样本全度的能力,增加将负样本预测为负样本,即负样本被预测为负样本占总的负样本的比例。值越大,性能performance越好
$$specificity = TNR = \frac{TN}{FP+TN} = \frac{TN}{N}$$

目录
相关文章
|
16小时前
|
机器学习/深度学习 资源调度 算法
机器学习领域必知数学符号与概念(一)
本文介绍了一些数学符号以及这些符号的含义。
87 64
|
3月前
|
机器学习/深度学习 自然语言处理 JavaScript
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
在信息论、机器学习和统计学领域中,KL散度(Kullback-Leibler散度)是量化概率分布差异的关键概念。本文深入探讨了KL散度及其相关概念,包括Jensen-Shannon散度和Renyi散度。KL散度用于衡量两个概率分布之间的差异,而Jensen-Shannon散度则提供了一种对称的度量方式。Renyi散度通过可调参数α,提供了更灵活的散度度量。这些概念不仅在理论研究中至关重要,在实际应用中也广泛用于数据压缩、变分自编码器、强化学习等领域。通过分析电子商务中的数据漂移实例,展示了这些散度指标在捕捉数据分布变化方面的独特优势,为企业提供了数据驱动的决策支持。
187 2
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
|
3月前
|
机器学习/深度学习 传感器 算法
机器学习入门(一):机器学习分类 | 监督学习 强化学习概念
机器学习入门(一):机器学习分类 | 监督学习 强化学习概念
|
5月前
|
机器学习/深度学习 算法
【机器学习】解释对偶的概念及SVM中的对偶算法?(面试回答)
解释了对偶的概念,指出对偶性在优化问题中的重要性,尤其是在强对偶性成立时可以提供主问题的最优下界,并且详细阐述了支持向量机(SVM)中对偶算法的应用,包括如何将原始的最大间隔优化问题转换为对偶问题来求解。
112 2
|
5月前
|
机器学习/深度学习 算法
【机器学习】简单解释贝叶斯公式和朴素贝叶斯分类?(面试回答)
简要解释了贝叶斯公式及其在朴素贝叶斯分类算法中的应用,包括算法的基本原理和步骤。
85 1
|
5月前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】聚类算法中的距离度量有哪些及公式表示?
聚类算法中常用的距离度量方法及其数学表达式,包括欧式距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、余弦相似度等多种距离和相似度计算方式。
472 1
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之深度学习算法概念
深度学习算法是一类基于人工神经网络的机器学习方法,其核心思想是通过多层次的非线性变换,从数据中学习表示层次特征,从而实现对复杂模式的建模和学习。深度学习算法在图像识别、语音识别、自然语言处理等领域取得了巨大的成功,成为人工智能领域的重要技术之一。
98 3
|
5月前
|
机器学习/深度学习 算法 搜索推荐
【机器学习】凸集、凸函数、凸优化、凸优化问题、非凸优化问题概念详解
本文解释了凸集、凸函数、凸优化以及非凸优化的概念,并探讨了它们在机器学习中的应用,包括如何将非凸问题转化为凸问题的方法和技术。
615 0
|
7月前
|
机器学习/深度学习 人工智能 算法
【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化
【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化
91 3
|
7月前
|
机器学习/深度学习 数据采集 人工智能
机器学习基础概念与初步探索
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。作为人工智能的核心,机器学习是使计算机具有智能的根本途径。未来的机器学习将具有更高的自动化水平,能够处理更加复杂和抽象的问题,为人类带来更多的便利和价值。
54 2