victoriaMetrics中的一些Sao操作

简介: victoriaMetrics中的一些Sao操作

目录

快速获取当前时间

victoriaMetrics中有一个fasttime库,用于快速获取当前的Unix时间,实现其实挺简单,就是在后台使用一个goroutine不断以1s为周期刷新表示当前时间的变量currentTimestamp,获取的时候直接原子加载该变量即可。其性能约是time.Now()的8倍。


其核心方式就是将主要任务放到后台运行,通过一个中间变量来传递运算结果,以此来通过异步的方式提升性能,但需要业务能包容一定的精度偏差。

func init() {
  go func() {
    ticker := time.NewTicker(time.Second)
    defer ticker.Stop()
    for tm := range ticker.C { 
      t := uint64(tm.Unix())
      atomic.StoreUint64(&currentTimestamp, t)
    }
  }()
}
var currentTimestamp = uint64(time.Now().Unix())
// UnixTimestamp returns the current unix timestamp in seconds.
//
// It is faster than time.Now().Unix()
func UnixTimestamp() uint64 {
  return atomic.LoadUint64(&currentTimestamp)
}

计算结构体的哈希值

hashUint64函数中使用xxhash.Sum64计算了结构体Key的哈希值。通过unsafe.Pointer将指针转换为*[]byte类型,byte数组的长度为unsafe.Sizeof(*k)unsafe.Sizeof()返回结构体的字节大小。


如果一个数据为固定的长度,如h的类型为uint64,则可以直接指定长度为8进行转换,如:bp:=([8]byte)(unsafe.Pointer(&h))


需要注意的是unsafe.Sizeof()返回的是数据结构的大小而不是其指向内容的数据大小,如下返回的slice大小为24,为slice首部数据结构SliceHeader的大小,而不是其引用的数据大小(可以使用len获取slice引用的数据大小)。此外如果结构体中有指针,则转换成的byte中存储的也是指针存储的地址。

slice := []int{1,2,3,4,5,6,7,8,9,10}
fmt.Println(unsafe.Sizeof(slice)) //24
type Key struct {
  Part interface{}
  Offset uint64
}
func (k *Key) hashUint64() uint64 {
  buf := (*[unsafe.Sizeof(*k)]byte)(unsafe.Pointer(k))
  return xxhash.Sum64(buf[:])
}

将字符串添加到已有的[]byte中

使用如下方式即可:

str := "1231445"
arr := []byte{1, 2, 3}
arr = append(arr, str...)

将int64的数组转换为byte数组

直接操作了底层的SliceHeader

func int64ToByteSlice(a []int64) (b []byte) {
   sh := (*reflect.SliceHeader)(unsafe.Pointer(&b))
   sh.Data = uintptr(unsafe.Pointer(&a[0]))
   sh.Len = len(a) * int(unsafe.Sizeof(a[0]))
   sh.Cap = sh.Len
return
}

并发访问的sync.WaitGroup

并发访问的sync.WaitGroup的目的是为了在运行时添加需要等待的goroutine

// WaitGroup wraps sync.WaitGroup and makes safe to call Add/Wait
// from concurrent goroutines.
//
// An additional limitation is that call to Wait prohibits further calls to Add
// until return.
type WaitGroup struct {
  sync.WaitGroup
  mu sync.Mutex
}
// Add registers n additional workers. Add may be called from concurrent goroutines.
func (wg *WaitGroup) Add(n int) {
  wg.mu.Lock()
  wg.WaitGroup.Add(n)
  wg.mu.Unlock()
}
// Wait waits until all the goroutines call Done.
//
// Wait may be called from concurrent goroutines.
//
// Further calls to Add are blocked until return from Wait.
func (wg *WaitGroup) Wait() {
  wg.mu.Lock()
  wg.WaitGroup.Wait()
  wg.mu.Unlock()
}
// WaitAndBlock waits until all the goroutines call Done and then prevents
// from new goroutines calling Add.
//
// Further calls to Add are always blocked. This is useful for graceful shutdown
// when other goroutines calling Add must be stopped.
//
// wg cannot be used after this call.
func (wg *WaitGroup) WaitAndBlock() {
  wg.mu.Lock()
  wg.WaitGroup.Wait()
  // Do not unlock wg.mu, so other goroutines calling Add are blocked.
}
// There is no need in wrapping WaitGroup.Done, since it is already goroutine-safe.

时间池

高频次创建timer会消耗一定的性能,为了减少某些情况下的性能损耗,可以使用sync.Pool来回收利用创建的timer

// Get returns a timer for the given duration d from the pool.
//
// Return back the timer to the pool with Put.
func Get(d time.Duration) *time.Timer {
  if v := timerPool.Get(); v != nil {
    t := v.(*time.Timer)
    if t.Reset(d) {
      logger.Panicf("BUG: active timer trapped to the pool!")
    }
    return t
  }
  return time.NewTimer(d)
}
// Put returns t to the pool.
//
// t cannot be accessed after returning to the pool.
func Put(t *time.Timer) {
  if !t.Stop() {
    // Drain t.C if it wasn't obtained by the caller yet.
    select {
    case <-t.C:
    default:
    }
  }
  timerPool.Put(t)
}
var timerPool sync.Pool

访问限速

victoriaMetrics的vminsert作为vmagentvmstorage之间的组件,接收vmagent的流量并将其转发到vmstorage。在vmstorage卡死、处理过慢或下线的情况下,有可能会导致无法转发流量,进而造成vminsert CPU和内存飙升,造成组件故障。为了防止这种情况,vminsert使用了限速器,当接收到的流量激增时,可以在牺牲一部分数据的情况下保证系统的稳定性。


victoriaMetrics的源码中对限速器有如下描述:


Limit the number of conurrent f calls in order to prevent from excess memory usage and CPU thrashing


限速器使用了两个参数:maxConcurrentInsertsmaxQueueDuration,前者给出了突发情况下可以处理的最大请求数,后者给出了某个请求的最大超时时间。需要注意的是Do(f func() error)是异步执行的,而ch又是全局的,因此会异步等待其他请求释放资源(struct{})。


可以看到限速器使用了指标来指示当前的限速状态。同时使用cgroup.AvailableCPUs()*4 (即runtime.GOMAXPROCS(-1)*4)来设置默认的maxConcurrentInserts长度。



当该限速器用在处理如http请求时,该限速器并不能限制底层上送的请求,其限制的是对请求的处理。在高流量业务处理中,这也是最消耗内存的地方,通常包含数据读取、内存申请拷贝等。底层的数据受/proc/sys/net/core/somaxconn和socket缓存区的限制。

var (
  maxConcurrentInserts = flag.Int("maxConcurrentInserts", cgroup.AvailableCPUs()*4, "The maximum number of concurrent inserts. Default value should work for most cases, "+
    "since it minimizes the overhead for concurrent inserts. This option is tigthly coupled with -insert.maxQueueDuration")
  maxQueueDuration = flag.Duration("insert.maxQueueDuration", time.Minute, "The maximum duration for waiting in the queue for insert requests due to -maxConcurrentInserts")
)
// ch is the channel for limiting concurrent calls to Do.
var ch chan struct{}
// Init initializes concurrencylimiter.
//
// Init must be called after flag.Parse call.
func Init() {
  ch = make(chan struct{}, *maxConcurrentInserts) //初始化limiter,最大突发并行请求量为maxConcurrentInserts
}
// Do calls f with the limited concurrency.
func Do(f func() error) error {
  // Limit the number of conurrent f calls in order to prevent from excess
  // memory usage and CPU thrashing.
  select {
  case ch <- struct{}{}: //在channel中添加一个元素,表示开始处理一个请求
    err := f() //阻塞等大请求处理结束
    <-ch //请求处理完之后释放channel中的一个元素,释放出的空间可以用于处理下一个请求
    return err
  default:
  }
//如果当前达到处理上限maxConcurrentInserts,则需要等到其他Do(f func() error)释放资源。
  // All the workers are busy.
  // Sleep for up to *maxQueueDuration.
  concurrencyLimitReached.Inc()
  t := timerpool.Get(*maxQueueDuration) //获取一个timer,设置等待超时时间为 maxQueueDuration
  select {
  case ch <- struct{}{}: //在maxQueueDuration时间内等待其他请求释放资源,如果获取到资源,则回收timer,继续处理
    timerpool.Put(t)
    err := f()
    <-
    return err
  case <-t.C: //在maxQueueDuration时间内没有获取到资源,定时器超时后回收timer,丢弃请求并返回错误信息
    timerpool.Put(t)
    concurrencyLimitTimeout.Inc()
    return &httpserver.ErrorWithStatusCode{
      Err: fmt.Errorf("cannot handle more than %d concurrent inserts during %s; possible solutions: "+
        "increase `-insert.maxQueueDuration`, increase `-maxConcurrentInserts`, increase server capacity", *maxConcurrentInserts, *maxQueueDuration),
      StatusCode: http.StatusServiceUnavailable,
    }
  }
}
var (
  concurrencyLimitReached = metrics.NewCounter(`vm_concurrent_insert_limit_reached_total`)
  concurrencyLimitTimeout = metrics.NewCounter(`vm_concurrent_insert_limit_timeout_total`)
  _ = metrics.NewGauge(`vm_concurrent_insert_capacity`, func() float64 {
    return float64(cap(ch))
  })
  _ = metrics.NewGauge(`vm_concurrent_insert_current`, func() float64 {
    return float64(len(ch))
  })
)

优先级控制

victoriaMetrics的pacelimiter库实现了优先级控制。主要方法由IncDecWaitIfNeeded。低优先级任务需要调用WaitIfNeeded方法,如果此时有高优先级任务(调用Inc方法),则低优先级任务需要等待高优先级任务结束(调用Dec方法)之后才能继续执行。

// PaceLimiter throttles WaitIfNeeded callers while the number of Inc calls is bigger than the number of Dec calls.
//
// It is expected that Inc is called before performing high-priority work,
// while Dec is called when the work is done.
// WaitIfNeeded must be called inside the work which must be throttled (i.e. lower-priority work).
// It may be called in the loop before performing a part of low-priority work.
type PaceLimiter struct {
  mu          sync.Mutex
  cond        *sync.Cond
  delaysTotal uint64
  n           int32
}
// New returns pace limiter that throttles WaitIfNeeded callers while the number of Inc calls is bigger than the number of Dec calls.
func New() *PaceLimiter {
  var pl PaceLimiter
  pl.cond = sync.NewCond(&pl.mu)
  return &pl
}
// Inc increments pl.
func (pl *PaceLimiter) Inc() {
  atomic.AddInt32(&pl.n, 1)
}
// Dec decrements pl.
func (pl *PaceLimiter) Dec() {
  if atomic.AddInt32(&pl.n, -1) == 0 {
    // Wake up all the goroutines blocked in WaitIfNeeded,
    // since the number of Dec calls equals the number of Inc calls.
    pl.cond.Broadcast()
  }
}
// WaitIfNeeded blocks while the number of Inc calls is bigger than the number of Dec calls.
func (pl *PaceLimiter) WaitIfNeeded() {
  if atomic.LoadInt32(&pl.n) <= 0 {
    // Fast path - there is no need in lock.
    return
  }
  // Slow path - wait until Dec is called.
  pl.mu.Lock()
  for atomic.LoadInt32(&pl.n) > 0 {
    pl.delaysTotal++
    pl.cond.Wait()
  }
  pl.mu.Unlock()
}
// DelaysTotal returns the number of delays inside WaitIfNeeded.
func (pl *PaceLimiter) DelaysTotal() uint64 {
  pl.mu.Lock()
  n := pl.delaysTotal
  pl.mu.Unlock()
  return n
}
目录
相关文章
|
2月前
|
Java 程序员 API
Java循环操作哪个快?
本文探讨了Java中stream API与传统for循环在性能上的对比,通过多个示例分析了不同场景下两者的优劣。作者指出,尽管stream API使代码更简洁,但不当使用会降低可读性和性能,特别是在处理大数据量时。实验结果显示,在多数情况下,普通for循环的性能优于stream API,尤其是在单次操作耗时较短但需多次执行的场景中。文章建议开发者在设计初期就考虑全局流程,避免重复使用stream流,以提升代码质量和性能。
Java循环操作哪个快?
|
C++
c++一些简单操作
c++一些简单操作
86 0
|
分布式计算 网络协议 Ubuntu
系统通信方式操作
系统通信方式操作
80 0
系统通信方式操作
|
索引 Windows
ListControl操作
ListControl操作
87 0
|
Linux
文件控制操作
文件控制操作
126 0
|
SQL Java 数据库连接
MyBatisCRUD操作
MyBatisCRUD操作
C#编程-90:Hashtale相关操作
C#编程-90:Hashtale相关操作
|
设计模式 JavaScript 前端开发
jQuery基础操作
jQuery基础操作
190 0
jQuery基础操作