未来数据中心将看重能源测量和冷却效率

简介:

尽管使用有效性进行衡量有它的好处,但并不能充分优化数据中心的效率。IT团队需要更详细的数据中心指标,包括能源和冷却基础设施,以及计算系统,以真正优化数据中心。

谈到在这一方面的进展,2007年美国环境保护局(Environmental Protection Agency)公布了一份关于数据中心效率的报告,其中指出希望发布名为“能源之星”(ENERGY STAR)的服务器评级标准,尽管后来实现比预期的要晚,他们还是完成了这一标准。Green Grid早在2010年公布了水的使用效率和碳使用效率指标,但是并没有引起太多的关注。2016年6月,Green Grid宣布的性能指标(Performance Indicator,PI),一个着眼于将冷却标准与能源效率结合起来进行评价的指标。

我们已经习惯于以性能和效率的指标来评价数据中心,然而对于多数IT团队来说,甚至是一些日常跟踪能源使用效率(power usage effectiveness,PUE)的团队来说,启用新的评价指标无疑需要更高端的数据收集以及分析技巧。对于那些已经准备好使用更加复杂优化工具的团队来说,有一些关键内容需要事前考虑。

拓展数据中心评价指标的意义

关闭休眠服务器、整合和虚拟化应用程序或购买符合能源之星评级的硬件等方式来节约能源是常见措施。然而,除非能源和冷却的基础设施同样完成优化,这对现存系统较为困难,否则降低的消耗将无法显着提高能源效率。这时PUE数据将变得更糟。通过以PUE为基准,而不作为跟踪度量,指标数据很可能看起来没救了,这样投资和付出是不值得的。管理层只希望他们的投资能催生较低的PUE数值,而没有理解数字本身所代表的意义。

这就是其他数据中心所采用的评价指标,如Green Grid的数据中心能源效率(data center energy productivity,DCeP)都是有价值的原因。DCeP将完成有效工作时,数据中心实际产生每瓦的能量消费的数据进行了量化。DCeP允许用户建立自己对有效工作指标的定义。例如,在线搜索公司可能会以其网站完成的搜索数量作为定义内容。而对于零售商来说,定义内容很可能是销售数量。PUE还是必要的,然而DCeP指标能更容易被一些经验较少的人们所理解。

尽管DCeP不是一个科学准确的度量角度,它提供了一种方法来量化你真正完成工作时所使用的能源。如果一家银行的服务器在大部分时间里都处于空闲状态,它描述出最小能量,所需的最少的冷却量,并不会显著地影响PUE。但它仍然消耗了能力却没几乎没完成任何工作。DCeP则正相反,它的目标是减少能源消耗,最大限度地提高有用的工作。对于行业中的领先企业,要将每一盎司的生产性计算从他们使用的每瓦功率中挤压出来,复杂的服务器可以提供远远超出了处理器利用率的操作数据,而更为复杂的数据中心度量可以跟踪结果。

然而PUE和DCeP还都只是有关能源效率和降低能源。使用它们衡量效率,可能造成部分无法识别的结果,因为这些指标无法显现出在节省能源、影响冷却性能和可靠性方面所作出的牺牲和让步。新的PI度量指标则可以做到,对于那些拥有更高水准数据收集技能的、有能力去优化运营过程中每个环节的管理员很有帮助。

PI度量的四个层级

PI度量有四个层级。Level 1是基本层级,不需要复杂的设备就可以应用。Level 2需要更彻底、更准确的测量。Level 3和Level 4添加计算流体动力学(computational fluid dynamics,CFD)的空气流建模来提供性能监控的图形可视化,还提供假设情景分析,预测使用当前能源效率时,未来的能力和故障模式是如何的。Level 3是普通建模。Level 4使用实际和详细的测量方法,校准计算流体动力学模型作为其他标准可信赖的准确度量基线。

要使用PI和DCeP这样的标准拓展数据中心度量有三个前提;

采用PUE方法;

在计算操作中定义哪些工作是有效工作并且

获取每个机架工作时产生的能源、温度等详细测量数据

PI将PUE、热合规性和弹性结合起来补充现有的度量方法。后两者分别基于ASHRAE推荐标准和允许的热度范围。热合规性和弹性研究如何在正常和异常条件下保证冷却工作的冗余。如果机房空调空气温度必须降低到满足热合规目标,PUE可能增加。PI度量的侧重点是要了解硬件是如何可靠地被冷却,以及能源设施的效率如何,以及一个因素如何影响其他因素。决定你距离想达到的极限距离有多少,以及你想要的目标能源效率或PUE值。然后,测量实际情况并绘制一张三角形的图,也称为蜘蛛图,看看他们是如何接近你的目标。

图1. 蜘蛛图是从几个维度衡量以确定大致的目标一种方法

  图1. 蜘蛛图是从几个维度衡量以确定大致的目标一种方法

现在有几种衡量数据中心的指标,依据能源效率,计算每单位能源消耗和可靠性相对能源效率的工作输出,以最大限度地提高整体数据中心的性能。对于大多数运营工作来说,坚持基本设施和跟踪电源使用的有效性应处于最优先。可以选择其他标准,但PUE仍然是基础。即使你还没有准备好采取进一步的措施,了解行业中成形的建议还是有帮助的,只要你有了目标就能知道应该如何去做。





====================================分割线================================


本文转自d1net(转载)

目录
相关文章
|
5月前
|
机器学习/深度学习 存储 数据采集
利用机器学习优化数据中心冷却系统
【4月更文挑战第26天】 在数据中心管理和运营中,冷却系统的能效是关键成本因素之一。随着能源价格的上涨和对环境可持续性的关注增加,开发智能、高效的冷却策略显得尤为重要。本文将探讨如何应用机器学习(ML)技术来优化数据中心的冷却系统。通过收集和分析温度、湿度、服务器负载等多维数据,我们构建了预测模型来动态调整冷却需求,实现节能并保持最佳的操作条件。实验结果表明,使用ML优化后的冷却系统能够在不牺牲性能的前提下显著降低能耗。
|
5月前
|
机器学习/深度学习 数据挖掘 物联网
【专栏】机器学习如何通过预测性维护、负载预测、动态冷却管理和能源效率优化提升数据中心能效
【4月更文挑战第27天】随着信息技术发展,数据中心能耗问题日益突出,占全球电力消耗一定比例。为提高能效,业界探索利用机器学习进行优化。本文讨论了机器学习如何通过预测性维护、负载预测、动态冷却管理和能源效率优化提升数据中心能效。然而,数据质量、模型解释性和规模化扩展是当前挑战。未来,随着技术进步和物联网发展,数据中心能效管理将更智能自动化,机器学习将在实现绿色高效发展中发挥关键作用。
106 5
|
5月前
|
机器学习/深度学习 存储 运维
利用机器学习优化数据中心冷却系统
【5月更文挑战第20天】 在数据中心运营成本中,冷却系统占据了一大块。随着能源价格的上涨和环境保护意识的增强,如何降低数据中心的能耗成为行业关注的重点。本文通过引入机器学习技术来优化数据中心冷却系统,旨在减少不必要的能源消耗,同时保持适宜的操作温度。通过收集历史温度数据、服务器负载信息以及外部气象条件,构建了一个预测模型,该模型能够实时调整冷却策略,实现动态节能。实验结果表明,与传统冷却系统相比,应用机器学习优化后的系统在不影响性能的前提下,能够节约高达20%的能源消耗。
|
2月前
|
机器学习/深度学习 存储 算法
利用机器学习优化数据中心的能源效率
【8月更文挑战第30天】 在信息技术不断进步的今天,数据中心作为支撑云计算、大数据分析和人工智能等技术的核心基础设施,其能源效率已成为衡量运营成本和环境可持续性的关键指标。本文旨在探讨如何通过机器学习技术对数据中心进行能源效率优化。首先,文中介绍了数据中心能耗的主要组成部分及其影响因素。其次,详细阐述了机器学习模型在预测和管理数据中心能源消耗方面的应用,并通过案例分析展示了机器学习算法在实际环境中的效果。最后,文章讨论了机器学习优化策略实施的潜在挑战与未来发展方向。
|
5月前
|
存储 大数据 数据处理
探索现代数据中心的冷却技术
【5月更文挑战第25天】 在信息技术迅猛发展的今天,数据中心作为其核心基础设施之一,承载了巨大的数据处理需求。随着服务器密度的增加和计算能力的提升,数据中心的能耗问题尤其是冷却系统的能效问题日益凸显。本文将深入探讨现代数据中心所采用的高效冷却技术,包括液冷解决方案、热管技术和环境自适应控制等,旨在为数据中心的绿色节能提供参考和启示。
|
5月前
|
机器学习/深度学习 存储 传感器
利用机器学习优化数据中心冷却系统
【5月更文挑战第30天】 在数据中心的运行中,冷却系统的能效对整体运营成本有着显著的影响。随着人工智能技术的进步,特别是机器学习(ML)的发展,出现了新的机会来优化数据中心的能源使用效率。本文将探讨如何通过机器学习模型预测数据中心的热负荷,并据此动态调整冷却策略,以实现能耗最小化。我们将介绍所采用的数据集、预处理方法、模型选择、训练过程以及最终实施的策略。结果表明,基于机器学习的预测系统能够有效降低数据中心的能源消耗,并为可持续运营提供支持。
|
5月前
|
人工智能 监控 物联网
探索现代数据中心的冷却技术
【5月更文挑战第27天】 在信息技术迅猛发展的今天,数据中心作为信息处理的核心设施,其稳定性和效率至关重要。而随着计算能力的提升,数据中心面临的一个重大挑战便是散热问题。本文将深入探讨现代数据中心冷却技术的进展,包括传统的空气冷却系统、水冷系统,以及新兴的相变材料和热管技术。通过对不同冷却方式的效率、成本及实施难度的分析,旨在为读者提供一份关于数据中心散热优化的参考指南。
|
5月前
|
机器学习/深度学习 监控 算法
利用机器学习优化数据中心冷却系统
【5月更文挑战第30天】在数据中心的运营成本中,冷却系统占据了相当一部分。为了提高能效和降低成本,本文提出了一种基于机器学习的方法来优化数据中心的冷却系统。通过对大量历史数据的分析和挖掘,我们设计了一个预测模型,用于实时监控和调整数据中心的温度。实验结果表明,该方法可以有效降低能耗,提高数据中心的运行效率。
|
5月前
|
存储 大数据 数据中心
探索现代数据中心的冷却革新
【5月更文挑战第29天】在信息技术不断进步的今天,数据中心作为计算和存储的核心枢纽,其稳定性与效率至关重要。随着处理能力的提升,散热问题日益凸显,成为限制数据中心性能的关键因素之一。本文将深入探讨现代数据中心面临的热管理挑战,并分享一系列前沿的冷却技术与实践,旨在为构建更为高效、环保的计算环境提供参考。
|
5月前
|
存储 大数据 数据中心
提升数据中心能效的先进冷却技术
【5月更文挑战第27天】 在信息技术不断进步的今天,数据中心作为计算和存储的核心枢纽,其能源效率已成为评价其可持续性的关键指标。本文将探讨当前数据中心面临的热管理挑战,并展示一系列创新的冷却技术解决方案,旨在提高数据中心的能效,同时确保系统的稳定性和可靠性。通过对比传统冷却方法和新兴技术,我们将分析各种方案的优势、局限性以及实施难度,为数据中心运营者提供科学的决策参考。