Transformers 4.37 中文文档(十六)(4)https://developer.aliyun.com/article/1564935
FlaxSeq2SeqModelOutput
class transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput
( last_hidden_state: Array = None past_key_values: Optional = None decoder_hidden_states: Optional = None decoder_attentions: Optional = None cross_attentions: Optional = None encoder_last_hidden_state: Optional = None encoder_hidden_states: Optional = None encoder_attentions: Optional = None )
参数
last_hidden_state
(jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
) — 模型解码器最后一层的隐藏状态序列。
如果仅使用past_key_values
,则输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。past_key_values
(tuple(tuple(jnp.ndarray))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。
包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。decoder_hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
解码器在每一层的隐藏状态加上初始嵌入输出。decoder_attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。
解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。
解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。encoder_last_hidden_state
(jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 模型编码器最后一层的隐藏状态序列。encoder_hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
编码器在每一层的隐藏状态加上初始嵌入输出。encoder_attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。
编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
模型编码器输出的基类,还包含:预先计算的隐藏状态,可加速顺序解码。
replace
( **updates )
“返回一个用新值替换指定字段的新对象。
FlaxCausalLMOutputWithCrossAttentions
class transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions
( logits: Array = None past_key_values: Optional = None hidden_states: Optional = None attentions: Optional = None cross_attentions: Optional = None )
参数
logits
(jnp.ndarray
,形状为(batch_size, sequence_length, config.vocab_size)
)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(jnp.ndarray)
, 可选的,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
模型在每个层输出的隐藏状态加上初始嵌入输出。attentions
(tuple(jnp.ndarray)
, 可选的,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。
自注意力头中的注意力权重在注意力 softmax 之后,用于计算加权平均值。cross_attentions
(tuple(jnp.ndarray)
, 可选的,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。
交叉注意力 softmax 之后的注意力权重,用于计算交叉注意力头中的加权平均值。past_key_values
(tuple(tuple(jnp.ndarray))
, 可选的,当传递use_cache=True
或config.use_cache=True
时返回)— 长度为config.n_layers
的jnp.ndarray
元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态。仅在config.is_decoder = True
时相关。
包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。
因果语言模型(或自回归)输出的基类。
replace
( **updates )
“返回一个用新值替换指定字段的新对象。
FlaxMaskedLMOutput
class transformers.modeling_flax_outputs.FlaxMaskedLMOutput
( logits: Array = None hidden_states: Optional = None attentions: Optional = None )
参数
logits
(jnp.ndarray
,形状为(batch_size, sequence_length, config.vocab_size)
)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(jnp.ndarray)
, 可选的,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
模型在每个层输出的隐藏状态加上初始嵌入输出。attentions
(tuple(jnp.ndarray)
, 可选的,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。
注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
掩码语言模型输出的基类。
replace
( **updates )
“返回一个用新值替换指定字段的新对象。
FlaxSeq2SeqLMOutput
class transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput
( logits: Array = None past_key_values: Optional = None decoder_hidden_states: Optional = None decoder_attentions: Optional = None cross_attentions: Optional = None encoder_last_hidden_state: Optional = None encoder_hidden_states: Optional = None encoder_attentions: Optional = None )
参数
logits
(jnp.ndarray
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。past_key_values
(tuple(tuple(jnp.ndarray))
,可选,当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。
包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(见past_key_values
输入)。decoder_hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入输出,一个用于每一层的输出)。
解码器在每一层输出的隐藏状态加上初始嵌入输出。decoder_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。encoder_last_hidden_state
(jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层的隐藏状态序列。encoder_hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入输出,一个用于每一层的输出)。
编码器在每一层输出的隐藏状态加上初始嵌入输出。encoder_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
用于序列到序列语言模型输出的基类。
replace
( **updates )
“返回一个用新值替换指定字段的新对象。
FlaxNextSentencePredictorOutput
class transformers.modeling_flax_outputs.FlaxNextSentencePredictorOutput
( logits: Array = None hidden_states: Optional = None attentions: Optional = None )
参数
logits
(jnp.ndarray
,形状为(batch_size, 2)
) — 下一个序列预测(分类)头的预测得分(SoftMax 之前的 True/False 连续得分)。hidden_states
(tuple(jnp.ndarray)
, 可选的, 当传递output_hidden_states=True
或者config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(嵌入输出和每一层输出各一个)。
模型在每一层输出的隐藏状态以及初始嵌入输出。attentions
(tuple(jnp.ndarray)
, 可选的, 当传递output_attentions=True
或者config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
自注意力头中用于计算加权平均值的注意力权重 softmax 后的值。
预测两个句子是否连续的模型输出的基类。
replace
( **updates )
“返回一个用新值替换指定字段的新对象。
FlaxSequenceClassifierOutput
class transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput
( logits: Array = None hidden_states: Optional = None attentions: Optional = None )
参数
logits
(jnp.ndarray
,形状为(batch_size, config.num_labels)
) — 分类(如果config.num_labels==1
则为回归)得分(SoftMax 之前)。hidden_states
(tuple(jnp.ndarray)
, 可选的, 当传递output_hidden_states=True
或者config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(嵌入输出和每一层输出各一个)。
模型在每一层输出的隐藏状态以及初始嵌入输出。attentions
(tuple(jnp.ndarray)
, 可选的, 当传递output_attentions=True
或者config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
自注意力头中用于计算加权平均值的注意力权重 softmax 后的值。
句子分类模型输出的基类。
replace
( **updates )
“返回一个用新值替换指定字段的新对象。
FlaxSeq2SeqSequenceClassifierOutput
class transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput
( logits: Array = None past_key_values: Optional = None decoder_hidden_states: Optional = None decoder_attentions: Optional = None cross_attentions: Optional = None encoder_last_hidden_state: Optional = None encoder_hidden_states: Optional = None encoder_attentions: Optional = None )
参数
logits
(jnp.ndarray
,形状为(batch_size, config.num_labels)
) — 分类(如果config.num_labels==1
则为回归)得分(SoftMax 之前)。past_key_values
(tuple(tuple(jnp.ndarray))
, 可选的, 当传递use_cache=True
或者config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。
包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。decoder_hidden_states
(tuple(jnp.ndarray)
, 可选的, 当传递output_hidden_states=True
或者config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(嵌入输出和每一层输出各一个)。
解码器在每一层输出的隐藏状态以及初始嵌入输出。decoder_attentions
(tuple(jnp.ndarray)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(jnp.ndarray)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。encoder_last_hidden_state
(jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层的隐藏状态序列。encoder_hidden_states
(tuple(jnp.ndarray)
, 可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入输出,一个用于每一层的输出)。
编码器在每一层输出的隐藏状态以及初始嵌入输出。encoder_attentions
(tuple(jnp.ndarray)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
用于序列到序列句子分类模型输出的基类。
replace
( **updates )
“用新值替换指定字段的新对象。
FlaxMultipleChoiceModelOutput
class transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput
( logits: Array = None hidden_states: Optional = None attentions: Optional = None )
参数
logits
(jnp.ndarray
,形状为(batch_size, num_choices)
) — num_choices是输入张量的第二维度。(参见上面的input_ids)。
分类得分(SoftMax 之前)。hidden_states
(tuple(jnp.ndarray)
, 可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入输出,一个用于每一层的输出)。
模型在每一层输出的隐藏状态以及初始嵌入输出。attentions
(tuple(jnp.ndarray)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
多选模型输出的基类。
replace
( **updates )
“用新值替换指定字段的新对象。
FlaxTokenClassifierOutput
class transformers.modeling_flax_outputs.FlaxTokenClassifierOutput
( logits: Array = None hidden_states: Optional = None attentions: Optional = None )
参数
logits
(jnp.ndarray
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类得分(SoftMax 之前)。hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
模型在每个层的输出以及初始嵌入输出的隐藏状态。attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
用于标记分类模型输出的基类。
replace
( **updates )
“返回一个新对象,用新值替换指定的字段。
FlaxQuestionAnsweringModelOutput
class transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput
( start_logits: Array = None end_logits: Array = None hidden_states: Optional = None attentions: Optional = None )
参数
start_logits
(形状为(batch_size, sequence_length)
的jnp.ndarray
)— SoftMax 之前的跨度起始分数。end_logits
(形状为(batch_size, sequence_length)
的jnp.ndarray
)— SoftMax 之前的跨度结束分数。hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
模型在每个层的输出以及初始嵌入输出的隐藏状态。attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
用于问答模型输出的基类。
replace
( **updates )
“返回一个新对象,用新值替换指定的字段。
FlaxSeq2SeqQuestionAnsweringModelOutput
class transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput
( start_logits: Array = None end_logits: Array = None past_key_values: Optional = None decoder_hidden_states: Optional = None decoder_attentions: Optional = None cross_attentions: Optional = None encoder_last_hidden_state: Optional = None encoder_hidden_states: Optional = None encoder_attentions: Optional = None )
参数
start_logits
(形状为(batch_size, sequence_length)
的jnp.ndarray
)— SoftMax 之前的跨度起始分数。end_logits
(形状为(batch_size, sequence_length)
的jnp.ndarray
)— SoftMax 之前的跨度结束分数。past_key_values
(tuple(tuple(jnp.ndarray))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)— 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,以及 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。
包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可以用来加速顺序解码(请参见past_key_values
输入)。decoder_hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
解码器在每个层的输出以及初始嵌入输出的隐藏状态。decoder_attentions
(tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。encoder_last_hidden_state
(jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层的隐藏状态序列。encoder_hidden_states
(tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入输出,一个用于每一层的输出)。
编码器每一层输出的隐藏状态加上初始嵌入输出。encoder_attentions
(tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。
编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
用于序列到序列问答模型输出的基类。
replace
( **updates )
“返回一个新对象,用新值替换指定字段。