Transformers 4.37 中文文档(十六)(2)https://developer.aliyun.com/article/1564933
XVectorOutput
class transformers.modeling_outputs.XVectorOutput
( loss: Optional = None logits: FloatTensor = None embeddings: FloatTensor = None hidden_states: Optional = None attentions: Optional = None )
参数
loss
(torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类损失。logits
(torch.FloatTensor
,形状为(batch_size, config.xvector_output_dim)
) — AMSoftmax 之前的分类隐藏状态。embeddings
(torch.FloatTensor
,形状为(batch_size, config.xvector_output_dim)
) — 用于基于向量相似性检索的话语嵌入。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
模型在每一层输出的隐藏状态加上初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每一层一个)。
注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
Wav2Vec2ForXVector 的输出类型。
Seq2SeqTSModelOutput
class transformers.modeling_outputs.Seq2SeqTSModelOutput
( last_hidden_state: FloatTensor = None past_key_values: Optional = None decoder_hidden_states: Optional = None decoder_attentions: Optional = None cross_attentions: Optional = None encoder_last_hidden_state: Optional = None encoder_hidden_states: Optional = None encoder_attentions: Optional = None loc: Optional = None scale: Optional = None static_features: Optional = None )
参数
last_hidden_state
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型解码器最后一层的隐藏状态序列。
如果使用了past_key_values
,则只输出形状为(batch_size, 1, hidden_size)
的序列的最后隐藏状态。past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。
包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。decoder_hidden_states
(tuple(torch.FloatTensor)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入层的输出+每层的输出)的形状为(batch_size, sequence_length, hidden_size)
。
解码器在每一层输出的隐藏状态以及可选的初始嵌入输出。decoder_attentions
(tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个)的形状为(batch_size, num_heads, sequence_length, sequence_length)
。
解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个)的形状为(batch_size, num_heads, sequence_length, sequence_length)
。
解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。encoder_last_hidden_state
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 模型编码器最后一层的隐藏状态序列。encoder_hidden_states
(tuple(torch.FloatTensor)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入层的输出+每层的输出)的形状为(batch_size, sequence_length, hidden_size)
。
编码器在每一层输出的隐藏状态以及可选的初始嵌入输出。encoder_attentions
(tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个)的形状为(batch_size, num_heads, sequence_length, sequence_length)
。
编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。loc
(torch.FloatTensor
of shape(batch_size,)
or(batch_size, input_size)
, optional) — 每个时间序列上下文窗口的偏移值,用于给模型输入相同数量级的输入,然后用于将其偏移回原始数量级。scale
(torch.FloatTensor
of shape(batch_size,)
or(batch_size, input_size)
, optional) — 每个时间序列上下文窗口的缩放值,用于给模型输入相同数量级的输入,然后用于将其重新缩放回原始数量级。static_features
(torch.FloatTensor
of shape(batch_size, feature size)
, optional) — 每个时间序列在批处理中的静态特征,在推断时复制到协变量中。
时间序列模型编码器输出的基类,还包含可以加速顺序解码的预计算隐藏状态。
Seq2SeqTSPredictionOutput
class transformers.modeling_outputs.Seq2SeqTSPredictionOutput
( loss: Optional = None params: Optional = None past_key_values: Optional = None decoder_hidden_states: Optional = None decoder_attentions: Optional = None cross_attentions: Optional = None encoder_last_hidden_state: Optional = None encoder_hidden_states: Optional = None encoder_attentions: Optional = None loc: Optional = None scale: Optional = None static_features: Optional = None )
参数
loss
(torch.FloatTensor
of shape(1,)
, optional, 当提供future_values
时返回) — 分布损失。params
(torch.FloatTensor
of shape(batch_size, num_samples, num_params)
) — 所选分布的参数。past_key_values
(tuple(tuple(torch.FloatTensor))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。
包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。decoder_hidden_states
(tuple(torch.FloatTensor)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组。
解码器每一层的输出隐藏状态加上初始嵌入输出。decoder_attentions
(tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组。
解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组。
解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。encoder_last_hidden_state
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 模型编码器最后一层的隐藏状态序列。encoder_hidden_states
(tuple(torch.FloatTensor)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组。
编码器每一层的输出隐藏状态加上初始嵌入输出。encoder_attentions
(tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组。
编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。loc
(torch.FloatTensor
,形状为(batch_size,)
或(batch_size, input_size)
,optional) — 每个时间序列上下文窗口的偏移值,用于给模型输入相同数量级的值,然后用于将其偏移回原始数量级。scale
(torch.FloatTensor
,形状为(batch_size,)
或(batch_size, input_size)
,optional) — 每个时间序列上下文窗口的缩放值,用于给模型输入相同数量级的值,然后用于将其重新缩放回原始数量级。static_features
(torch.FloatTensor
,形状为(batch_size, feature size)
,optional) — 每个时间序列批次的静态特征,在推断时复制到协变量中。
时间序列模型解码器输出的基类,还包含损失以及所选分布的参数。
SampleTSPredictionOutput
class transformers.modeling_outputs.SampleTSPredictionOutput
( sequences: FloatTensor = None )
参数
sequences
(torch.FloatTensor
,形状为(batch_size, num_samples, prediction_length)
或(batch_size, num_samples, prediction_length, input_size)
) — 从选择的分布中抽样的值。
时间序列模型预测输出的基类,包含从选择的分布中抽样的值。
TFBaseModelOutput
class transformers.modeling_tf_outputs.TFBaseModelOutput
( last_hidden_state: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None )
参数
last_hidden_state
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的隐藏状态序列。hidden_states
(tuple(tf.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入输出 + 一个用于每一层的输出)。
模型每一层的隐藏状态以及初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每一层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
模型输出的基类,具有潜在的隐藏状态和注意力。
TFBaseModelOutputWithPooling
class transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling
( last_hidden_state: tf.Tensor = None pooler_output: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None )
参数
last_hidden_state
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的隐藏状态序列。pooler_output
(tf.Tensor
,形状为(batch_size, hidden_size)
) — 序列第一个标记(分类标记)的最后一层隐藏状态,进一步由线性层和 Tanh 激活函数处理。线性层的权重是在预训练期间从下一个句子预测(分类)目标中训练的。
这个输出通常不是输入语义内容的好摘要,通常最好对整个输入序列的隐藏状态进行平均或池化。hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入输出 + 一个用于每一层的输出)。
模型每一层的隐藏状态以及初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每一层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
模型输出的基类,还包含最后隐藏状态的汇聚。
TFBaseModelOutputWithPoolingAndCrossAttentions
class transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions
( last_hidden_state: tf.Tensor = None pooler_output: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None cross_attentions: Tuple[tf.Tensor] | None = None )
参数
last_hidden_state
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的隐藏状态序列。pooler_output
(tf.Tensor
,形状为(batch_size, hidden_size)
) — 序列第一个标记(分类标记)的最后一层隐藏状态,经过线性层和 Tanh 激活函数进一步处理。线性层的权重在预训练期间从下一个句子预测(分类)目标中训练。
该输出通常不是输入语义内容的良好摘要,通常最好对整个输入序列的隐藏状态序列进行平均或池化。past_key_values
(List[tf.Tensor]
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。
包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。hidden_states
(tuple(tf.Tensor)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
模型每一层输出的隐藏状态以及初始嵌入输出。attentions
(tuple(tf.Tensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每一层一个)。
在自注意力头中使用注意力 softmax 后的注意力权重,用于计算加权平均值。cross_attentions
(tuple(tf.Tensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每一层一个)。
在解码器的交叉注意力层中使用注意力 softmax 后的注意力权重,用于计算交叉注意力头中的加权平均值。
模型输出的基类,还包含最后隐藏状态的池化。
TFBaseModelOutputWithPast
class transformers.modeling_tf_outputs.TFBaseModelOutputWithPast
( last_hidden_state: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None )
参数
last_hidden_state
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的隐藏状态序列。
如果使用past_key_values
,则只输出形状为(batch_size, 1, hidden_size)
的序列的最后隐藏状态。past_key_values
(List[tf.Tensor]
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。
包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。hidden_states
(tuple(tf.Tensor)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
模型每一层输出的隐藏状态以及初始嵌入输出。attentions
(tuple(tf.Tensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每一层一个)。
在自注意力头中使用注意力 softmax 后的注意力权重,用于计算加权平均值。
模型输出的基类,可能还包含过去的键/值(用于加速顺序解码)。
TFBaseModelOutputWithPastAndCrossAttentions
class transformers.modeling_tf_outputs.TFBaseModelOutputWithPastAndCrossAttentions
( last_hidden_state: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None cross_attentions: Tuple[tf.Tensor] | None = None )
参数
last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
)- 模型最后一层的隐藏状态序列。
如果仅使用past_key_values
,则输出序列的最后一个隐藏状态的形状为(batch_size, 1, hidden_size)
。past_key_values
(List[tf.Tensor]
,可选,当传递use_cache=True
或config.use_cache=True
时返回)- 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。
包含预计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码。hidden_states
(tuple(tf.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)。
模型在每一层输出的隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
解码器的交叉注意力层的注意力权重,在注意力 softmax 后,用于计算交叉注意力头中的加权平均值。
模型输出的基类,可能还包含过去的键/值(用于加速顺序解码)。
TFSeq2SeqModelOutput
class transformers.modeling_tf_outputs.TFSeq2SeqModelOutput
( last_hidden_state: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None decoder_hidden_states: Tuple[tf.Tensor] | None = None decoder_attentions: Tuple[tf.Tensor] | None = None cross_attentions: Tuple[tf.Tensor] | None = None encoder_last_hidden_state: tf.Tensor | None = None encoder_hidden_states: Tuple[tf.Tensor] | None = None encoder_attentions: Tuple[tf.Tensor] | None = None )
参数
last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
)- 模型解码器最后一层的隐藏状态序列。
如果仅使用past_key_values
,则输出序列的最后一个隐藏状态的形状为(batch_size, 1, hidden_size)
。past_key_values
(List[tf.Tensor]
,可选,当传递use_cache=True
或config.use_cache=True
时返回)- 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。
包含解码器的预计算隐藏状态(注意力块中的键和值),可用于加速顺序解码。decoder_hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)。
解码器在每一层输出的隐藏状态加上初始嵌入输出。decoder_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
解码器的注意力权重,在注意力 softmax 后,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。
解码器的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。encoder_last_hidden_state
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层的隐藏状态序列。encoder_hidden_states
(tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
模型编码器在每个层的输出以及初始嵌入输出的隐藏状态。encoder_attentions
(tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。
编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
模型编码器输出的基类,还包含:可以加速顺序解码的预先计算的隐藏状态。
TFCausalLMOutput
class transformers.modeling_tf_outputs.TFCausalLMOutput
( loss: tf.Tensor | None = None logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None )
参数
loss
(tf.Tensor
,形状为(n,)
,可选, 当提供labels
时返回,其中 n 是非掩码标签的数量) — 语言建模损失(用于下一个标记的预测)。logits
(tf.Tensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
模型在每个层的输出以及初始嵌入输出的隐藏状态。attentions
(tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。
注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
因果语言模型(或自回归)输出的基类。
TFCausalLMOutputWithCrossAttentions
class transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions
( loss: tf.Tensor | None = None logits: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None cross_attentions: Tuple[tf.Tensor] | None = None )
参数
loss
(tf.Tensor
,形状为(n,)
,可选, 当提供labels
时返回,其中 n 是非掩码标签的数量) — 语言建模损失(用于下一个标记的预测)。logits
(tf.Tensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
模型在每个层的输出以及初始嵌入输出的隐藏状态。attentions
(tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。
注意力权重在注意力 SoftMax 之后,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。
解码器交叉注意力层的注意力权重,在注意力 SoftMax 之后,用于计算交叉注意力头中的加权平均值。past_key_values
(List[tf.Tensor]
, 可选, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。
包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码。
用于因果语言模型(或自回归)输出的基类。
TFCausalLMOutputWithPast
class transformers.modeling_tf_outputs.TFCausalLMOutputWithPast
( loss: tf.Tensor | None = None logits: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None )
参数
loss
(tf.Tensor
of shape(n,)
, 可选, 其中 n 是非掩码标签的数量,当提供labels
时返回) — 语言建模损失(用于下一个标记预测)。logits
(tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头部的预测分数(SoftMax 之前每个词汇标记的分数)。past_key_values
(List[tf.Tensor]
, 可选, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。
包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码。hidden_states
(tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
每个层输出的模型隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。
注意力权重在注意力 SoftMax 之后,用于计算自注意力头中的加权平均值。
用于因果语言模型(或自回归)输出的基类。
Transformers 4.37 中文文档(十六)(4)https://developer.aliyun.com/article/1564935