基于IEEE13电网系统HIF模型的simulink建模与仿真

简介: **摘要:**构建基于IEEE13节点的HIF模型Simulink仿真,模拟谐波影响。系统设定为110V/60Hz,使用MATLAB2022a。HIF模型在节点注入谐波,分析其在电网中的传播。故障电流计算公式涉及相电压、地电压和故障阻抗。系统响应通过频率域分析,利用卷积计算X(f)=S(f)*G(f),检测HIF事件。研究旨在改进故障检测,应对传统保护策略失效的情况。

1.课题概述
基于IEEE13电网系统HIF模型的simulink建模与仿真。这里,以IEEE13作为测试网络进行仿真。HIF模型,采用如下的结构实现:
0764277716fe1e6627e204aa4c879644_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    这个,我们单独设计一个HIF模型。根据美国的民用电标准是110V/60Hz,所以这里,我们设置110V和60Hz。具体的参数:

cee163efb8ac9a1757e9e70f835cb3f1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.系统仿真结果

bb7b882fa9156e9e811bfb1a2c2638d4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序与模型
版本:MATLAB2022a

83f2d2957ad3598a139ce244a2f58c22_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

4.系统原理简介
IEEE 13电网系统是一个广泛应用于电力系统研究和教育的标准测试系统。它包含了一个平衡的配电网络,用于模拟实际的电力分配情况。在电力系统中,谐波是一个重要的考虑问题,因为它可能对电力系统的稳定性和效率产生负面影响。为了研究和模拟谐波在电力系统中的行为,研究人员经常使用谐波注入模型(HIF)。

4.1 IEEE 13电网系统概述
IEEE 13电网系统是一个包含多个节点和支路的复杂网络。它通常包括变压器、线路、负载和分布式电源等元件。这个系统被设计为在稳态和动态条件下都能提供可靠的电力供应。在IEEE 13电网系统中,每个节点都有一个指定的电压等级,并且系统的拓扑结构和参数都是已知的。

4.2 谐波注入模型(HIF)原理
谐波注入模型是一种用于模拟电力系统中谐波行为的数学模型。它的基本原理是在系统的特定节点注入谐波电流或电压,然后观察和分析这些谐波如何在系统中传播和影响其他节点。在HIF情况下,故障电流相较于正常短路情况要小得多。对于单相接地HIF,其数学模型可以表示为:

I_fault = (V_phase - V_ground) / Z_fault

其中:

I_fault 是故障电流。
V_phase 是故障线路的相电压。
V_ground 是大地电位。
Z_fault 是故障点的阻抗,对于高阻抗故障,Z_fault值较大。
由于HIF的特点,传统的过电流保护、零序电流保护等可能失效,因此需要采用更先进的检测方法,如利用暂态信号分析、谐波分析、负序分量分析等技术来检测这类故障。考虑故障后的网络频率响应,可以提取故障信号的频域特征进行HIF检测。设系统的频率响应函数为G(f),则故障信号S(f)经过系统后的输出X(f)可通过卷积计算得出:

X(f) = S(f) * G(f)

   通过分析X(f)在特定频段内的能量变化或者特定频率成分的幅值变化,可以有效识别出HIF事件。在实际应用中,HIF检测还需要结合详细的电网结构参数、运行数据以及故障类型的具体特点,设计并优化相应的检测算法和保护策略,以提高对各类复杂HIF情况的识别率和处理速度。
相关文章
|
3天前
|
算法 调度 SoC
基于飞轮和蓄电池的混合储能充放电控制系统simulink建模与仿真
本研究针对基于飞轮和蓄电池的混合储能充放电控制系统进行Simulink建模与仿真,通过改进控制算法显著提升系统性能。仿真结果显示,改进后的算法不仅提高了充电效率,缩短了充电时间,还优化了电池从放电到充电的切换过程,有效减少了电流过冲现象,延长了蓄电池的使用寿命。此外,飞轮储能的速度和稳定性也得到了明显改善。系统采用MATLAB2022a版本进行开发,详细介绍了飞轮和蓄电池储能系统的原理及其数学模型。
风储微网虚拟惯性控制系统simulink建模与仿真
风储微网虚拟惯性控制系统通过集成风力发电、储能系统等,模拟传统同步发电机的惯性特性,提高微网频率稳定性。Simulink建模与仿真结果显示,加入虚拟惯性控制后,电压更平缓地趋于稳定。该系统适用于大规模可再生能源接入,支持MATLAB2022a版本。
|
4月前
|
算法
基于MPPT最大功率跟踪算法的涡轮机控制系统simulink建模与仿真
**摘要:** 本课题构建了基于Simulink的涡轮机MPPT控制系统模型,采用爬山法追踪最大功率点,仿真展示MPPT控制效果、功率及转速变化。使用MATLAB2022a进行仿真,结果显示高效跟踪性能。MPPT算法确保系统在不同条件下的最优功率输出,通过调整涡轮参数如转速,匹配功率-转速曲线的峰值。该方法借鉴自光伏系统,适应涡轮机的变速操作。
|
16天前
|
传感器 算法
基于MPPT的风力机发电系统simulink建模与仿真
本课题基于最大功率点跟踪(MPPT)技术,对风力机发电系统进行Simulink建模与仿真。通过S函数实现MPPT算法,实时监测和调整风力发电机的工作状态,使其始终工作在最佳效率点,从而最大限度地利用风能,提高风力发电效率。系统包括风速传感器、发电机状态监测模块、MPPT控制器、发电机驱动系统及反馈回路,确保闭环控制的稳定性和准确性。
|
1月前
|
vr&ar C++
基于simulink的风轮机发电系统建模与仿真
本课题使用Simulink实现风轮机发电系统的建模与仿真,涵盖风速模型(基本风、阵风、阶跃风、随机风)、风力机模型及飞轮储能模块。采用MATLAB 2022a进行仿真,详细介绍了各风速成分的数学模型及其组合模型,阐述了风力机从风能捕获到电能输出的全过程,为风力发电系统的设计和优化提供了理论基础和技术支持。
|
3月前
|
算法
基于智能电网系统的PQ并网控制器simulink建模与仿真
在MATLAB 2022a的Simulink环境中构建智能电网PQ并网控制器模型,实现对并网三相电压电流的精确控制及其收敛输出。PQ控制器根据实时需求调节有功与无功功率,确保电力系统稳定。通过测量、计算、比较、控制和执行五大环节,实现PQ参考值的跟踪,保证电能质量和系统稳定性。广泛适用于可再生能源并网场景。
基于智能电网系统的PQ并网控制器simulink建模与仿真
|
4月前
|
传感器 算法
基于MPPT最大功率跟踪算法的风力机控制电路simulink建模与仿真
**摘要:** 本课题利用MATLAB2022a的Simulink进行风力机MPPT控制电路仿真,关注风力机转速、功率参数及CP效率。MPPT确保风力机在不同风速下优化运行,捕捉最大功率。风力机将风能转化为电能,功率与风速、叶片及发电机特性相关。MPPT算法动态调整参数以保持在最大功率点,常见算法如扰动观察法。仿真包含风速、转速、功率测量及控制算法模块,设计时需综合考虑传感器精度、抗干扰及控制器性能,适应不同风力机和发电机需求。
|
4月前
|
存储
基于蓄电池和飞轮混合储能系统的SIMULINK建模与仿真
构建了基于SIMULINK的蓄电池-飞轮混合储能系统模型,重点在于飞轮模型与控制策略。仿真展示了充放电电流电压、功率波形及交流负载端的电气参数变化,揭示了系统从波动到稳定的过程。 ### 系统原理 - 混合储能系统结合了蓄电池(化学能转换)和飞轮(动能存储)的优势,提供高效快速的能量响应。 - 蓄电池通过化学反应进行能量储存和释放。 - 飞轮储能利用电动机/发电机转换动能和电能。 - 智能控制协调二者工作,适应电力系统需求,提升系统性能。 ### 混合储能原理 混合系统利用控制系统协同蓄电池和飞轮,优化充电和放电,以提高储能效率和电力系统的整体表现,预示着其未来广泛应用的潜力。
|
5月前
|
算法
基于LQR控制算法的电磁减振控制系统simulink建模与仿真
该文主要介绍了基于LQR控制算法的电磁减振控制系统在MATLAB2022a中的Simulink建模与仿真。文章展示了系统仿真输出的控制器收敛曲线,并提供了相关图像来解释系统原理。LQR算法通过优化二次成本函数实现振动抑制,尤其适用于电磁减振系统,利用电磁执行机构动态调整力,高效抑制振动。文中附有关键模型和原理图。
|
6月前
|
数据可视化 算法
MATLAB Simulink 单相桥式整流电路性能研究
MATLAB Simulink 单相桥式整流电路性能研究
63 2