"
曲率半径公式推导
曲率(k):描述曲线下降长度随角度变化,k=limα→0∣∣ΔαΔs∣∣k=limα→0?|ΔαΔs|{\rm{k}} = \mathop {\lim }\limits_{\alpha ?\to 0} \left| {\frac{ {\Delta \alpha }}{ {\Delta s}}} \right|
R=1k=【1+(dydx)2】32d2ydx2=【1+(f′)2】32f′′R=1k=【1+(dydx)2】32d2ydx2=【1+(f′)2】32f″R //代码效果参考:https://v.youku.com/v_show/id_XNjQwNjgyNjUwOA==.html
= \frac{1}{k} = \frac{ { { {\left【 {1 + { {\left( {\frac{ {dy}}{ {dx}}} \right)}^2}} \right】}^{\frac{3}{2}}}}}{ {\frac{ { {d^2}y}}{ {d{x^2}}}}} = \frac{ { { {\left【 {1 + { {\left( {f'//代码效果参考: https://v.youku.com/v_show/id_XNjQwNjgyNjU0MA==.html } \right)}^2}} \right】}^{\frac{3}{2}}}}}{ {f''}} (1)曲率半径计算公式
推导过程
曲线上某点的曲率半径是该点的密切圆的半径,在limΔs→0ΔαΔs=dαdslimΔs→0?ΔαΔs=dαds\mathop {\lim }\limits_{\Delta {\rm{s}} \to 0} \frac{
{\Delta \alpha }}{
{\Delta s}} = \frac{
{d\alpha }}{
{ds}}存在的条件下,k=∣∣dα"