【c++】map和set的封装

简介: 【c++】map和set的封装

1.红黑树源码

我们使用上节课的红黑树源码来封装map和set.

因为map存的是(key,value),set存的是(key),为了我们set和map使用同一个类模板(红黑树),所以我们先要修改红黑树结点中存的数据类型,我们使用模板来初始化,根据实列化来决定结点中存的是pair,还是只有一个数据

做出修改:代码中所有key的地方用data代替,而data的数据类型是T,当是set实列化的时候T就是int(一种),当是map的时候T就是pair,比方说pair<string,int>

#include<iostream>
#include<string>
using namespace std;
enum Colour
{
  RED,
  BLACK
};
template<class  T>
struct rbtreenode
{
  rbtreenode<T>* _left;
  rbtreenode<T>* _right;
  rbtreenode<T>* _parent;
  T _data;
  Colour _col;
  
  rbtreenode(const T& data)
    :_left(nullptr)
    , _right(nullptr)
    , _parent(nullptr)
    , _data(data)
    , _col(RED)
    
  {}
};
template<class  T>
class rbtree
{
  typedef  rbtreenode<T> node;
public:
  void spinleft(node* parent)
  {
    node* subr = parent->_right;
    node* subrl = subr->_left;
    parent->_right = subrl;
    if (subrl)
      subrl->_parent = parent;
    subr->_left = parent;
    node* ppnode = parent->_parent;
    parent->_parent = subr;
    if (ppnode == nullptr)
    {
      _root = subr;
      subr->_parent = nullptr;
    }
    else
    {
      if (ppnode->_left == parent)
      {
        ppnode->_left = subr;
        subr->_parent = ppnode;
      }
      else
      {
        ppnode->_right = subr;
        subr->_parent = ppnode;
      }
    }
  
  }
  void spinright(node* parent)
  {
    node* subl = parent->_left;
    node* sublr = subl->_right;
    parent->_left = sublr;
    if (sublr)
      sublr->_parent = parent;
    subl->_right = parent;
    node* ppnode = parent->_parent;
    parent->_parent = subl;
    if (ppnode == nullptr)
    {
      _root = subl;
      subl->_parent = nullptr;
    }
    else
    {
      if (ppnode->_left == parent)
      {
        ppnode->_left = subl;
        subl->_parent = ppnode;
      }
      else
      {
        ppnode->_right = subl;
        subl->_parent = ppnode;
      }
    }
  
  }
  void spinlr(node* parent)
  {
    node* subl = parent->_left;
    node* sublr = subl->_right;
    //int bf = sublr->_bf;
    spinleft(parent->_left);
    spinright(parent);
  /*  if (bf == 1)
    {
      subl->_bf = -1;
      sublr->_bf = 0;
      parent->_bf = 0;
    }
    else if (bf == -1)
    {
      subl->_bf = 0;
      sublr->_bf = 0;
      parent->_bf = 1;
    }
    else
    {
      subl->_bf = 0;
      sublr->_bf = 0;
      parent->_bf = 0;
    }*/
  }
  void spinrl(node* parent)
  {
    node* subr = parent->_right;
    node* subrl = subr->_left;
    //int bf = subrl->_bf;
    spinright(subr);
    spinleft(parent);
  /*  if (bf == 1)
    {
      parent->_bf = -1;
      subr->_bf = 0;
      subrl->_bf = 0;
    }
    else if (bf == -1)
    {
      parent->_bf = 0;
      subr->_bf = 1;
      subrl->_bf = 0;
    }
    else
    {
      subr->_bf = 0;
      subrl->_bf = 0;
      parent->_bf = 0;
    }*/
  }
  bool insert(const T& data)
  {
    if (_root == nullptr)
    {
      _root = new node(data);
      _root->_col = BLACK;
      return true;
    }
    node* cur = _root;
    node* parent = nullptr;
    while (cur)
    {
      if (cur->_data > data)
      {
        parent = cur;
        cur = cur->_left;
      }
      else if (cur->_data < data)
      {
        parent = cur;
        cur = cur->_right;
      }
      else
      {
        return false;
      }
    }
    cur = new node(data);
    if (parent->_data > data)
    {
      parent->_left = cur;
    }
    else
    {
      parent->_right = cur;
    }
    cur->_parent = parent;
    while (parent && parent->_col == RED)
    {
      node* grandfather = parent->_parent;
      if (parent == grandfather->_left)
      {
        node* uncle = grandfather->_right;
        if (uncle && uncle->_col == RED)
        {
          parent->_col = BLACK;
          uncle->_col = BLACK;
          grandfather->_col = RED;
          cur = grandfather;
          parent = cur->_parent;
        }
        else
        {
          if (cur == parent->_right)
          {
            spinright(grandfather);
            parent->_col = BLACK;
            grandfather->_col = RED;
          }
          else
          {
            spinleft(parent);
            spinright(grandfather);
            cur->_col = BLACK;
            grandfather->_col = RED;
          }
          break;
        }
      }
      else
      {
        node* uncle = grandfather->_left;
        if (uncle && uncle->_col == RED)
        {
          parent->_col = BLACK;
          uncle->_col = BLACK;
          grandfather->_col = RED;
          cur = grandfather;
          parent = cur->_parent;
        }
        else
        {
          if (cur == parent->_left)
          {
            spinleft(grandfather);
            parent->_col = BLACK;
            grandfather->_col = RED;
          }
          else
          {
            spinright(parent);
            spinleft(grandfather);
            cur->_col = BLACK;
            grandfather->_col = RED;
          }
          break;
        }
      }
    }
    _root->_col = BLACK;
    return true;
  }
  bool Check(node* cur)
  {
    if (cur == nullptr)
      return true;
    if (cur->_col == RED && cur->_parent->_col == RED)
    {
      cout << cur->_key<< "存在连续的红色节点" << endl;
      return false;
    }
    return Check(cur->_left)
      && Check(cur->_right);
  }
  bool IsBalance()
  {
    if (_root && _root->_col == RED)
      return false;
    return Check(_root);
  }
  void inorder()
  {
    _inorder(_root);
  }
  void _inorder(node* root)
  {
    if (root == nullptr)
      return;
    _inorder(root->_left);
    cout << root->_data  << endl;
    _inorder(root->_right);
  }
  node* Find(const T& data)
  {
    node* cur = _root;
    node* parent = nullptr;
    while (cur)
    {
      if (cur->_data > data)
      {
        parent = cur;
        cur = cur->_left;
      }
      else if (cur->_data < _data)
      {
        parent = cur;
        cur = cur->_right;
      }
      else
      {
        return cur;
      }
    }
  
  
    return nullptr;
  
  
  
  
  
  
  
  }
  
private:
  int treeheight(node* root)
  {
    if (root == nullptr)
      return 0;
    int leftheight = treeheight(root->_left);
    int rightheight = treeheight(root->_right);
    return leftheight > rightheight ? leftheight + 1 : rightheight + 1;
  }
  node* _root = nullptr;
};
int main()
{
  rbtree<int>st;
  int a[] = //{ 16,3,1 };//测试右旋
        //{ 16,32,58 };//测试左旋
    //{ 8,3,1,10,6,4};//测试右左旋
  { 4, 2, 6, 1, 3, 5, 15, 7, 16,14 };
  for (auto e : a)
  {
    st.insert(e);
  }
  st.inorder();
  int ret = st.IsBalance();
  cout << endl;
  cout << ret;
}

2.set和map类的简单封装

#pragma once
#include"rbtree.h"
namespace zjw
{
  template<class K,class V>
  class map {
  public:
  private:
    rbtree<K,pair<K,V>>_st;
  };
}
#pragma once
#include"rbtree.h"
namespace zjw
{
  template<class K>
  class set {
  public:
  private:
    rbtree<K, K>_st;
  };
}

3.map和set调用底层rbtree的insert函数

#pragma once
#include"rbtree.h"
namespace zjw
{
  template<class K,class V>
  class map {
  public:
    bool insert(cosnt pair<K, V>& kv)
    {
    
      return _st.insrt(kv);
    
  
    }
  private:
    rbtree<K,pair<K,V>>_st;
  };
}
#pragma once
#include"rbtree.h"
namespace zjw
{
  template<class K>
  class set {
  public:
    bool insert(const K& key)
    {
      return _st.insert(key);
    
  
    }
  private:
    rbtree<K, K>_st;
  };
}

4.阶段测试

5._data的元素提取

因为我们不管是map还是set,他们插入都是根据第一个模板参数比较大小,来确定插入当前结点的左还是右,但是为什么之前的代码没有报错??

因为如果是map的话,pair也是可以比较大小的,规则是第一个大的大。第一个一样大,就比较第二个,第二个谁大就大

但是我们回顾之前的map和set都是按照第一个比较,所以我们可以这样做。在map和set类中定义内部类,如果rbtree中有需要比较data大小时,初始化一个内部类取data第一个内容来比较,我们只需要在map和set中初始化一个内部类对象即可返回data的第一个内容。

在rbtree中需要比较_data的地方都需要使用类对象来返回data的第一个内容

#pragma once
#include<iostream>
#include<string>
using namespace std;
enum Colour
{
  RED,
  BLACK
};
template<class  T>
struct rbtreenode
{
  rbtreenode<T>* _left;
  rbtreenode<T>* _right;
  rbtreenode<T>* _parent;
  T _data;
  Colour _col;
  rbtreenode(const T& data)
    :_left(nullptr)
    , _right(nullptr)
    , _parent(nullptr)
    , _data(data)
    , _col(RED)
  {}
};
template<class K,class  T,class OFKEY>
class rbtree
{
  typedef  rbtreenode<T> node;
public:
  void spinleft(node* parent)
  {
    node* subr = parent->_right;
    node* subrl = subr->_left;
    parent->_right = subrl;
    if (subrl)
      subrl->_parent = parent;
    subr->_left = parent;
    node* ppnode = parent->_parent;
    parent->_parent = subr;
    if (ppnode == nullptr)
    {
      _root = subr;
      subr->_parent = nullptr;
    }
    else
    {
      if (ppnode->_left == parent)
      {
        ppnode->_left = subr;
        subr->_parent = ppnode;
      }
      else
      {
        ppnode->_right = subr;
        subr->_parent = ppnode;
      }
    }
  }
  void spinright(node* parent)
  {
    node* subl = parent->_left;
    node* sublr = subl->_right;
    parent->_left = sublr;
    if (sublr)
      sublr->_parent = parent;
    subl->_right = parent;
    node* ppnode = parent->_parent;
    parent->_parent = subl;
    if (ppnode == nullptr)
    {
      _root = subl;
      subl->_parent = nullptr;
    }
    else
    {
      if (ppnode->_left == parent)
      {
        ppnode->_left = subl;
        subl->_parent = ppnode;
      }
      else
      {
        ppnode->_right = subl;
        subl->_parent = ppnode;
      }
    }
  }
  void spinlr(node* parent)
  {
    node* subl = parent->_left;
    node* sublr = subl->_right;
    //int bf = sublr->_bf;
    spinleft(parent->_left);
    spinright(parent);
    /*  if (bf == 1)
      {
        subl->_bf = -1;
        sublr->_bf = 0;
        parent->_bf = 0;
      }
      else if (bf == -1)
      {
        subl->_bf = 0;
        sublr->_bf = 0;
        parent->_bf = 1;
      }
      else
      {
        subl->_bf = 0;
        sublr->_bf = 0;
        parent->_bf = 0;
      }*/
  }
  void spinrl(node* parent)
  {
    node* subr = parent->_right;
    node* subrl = subr->_left;
    //int bf = subrl->_bf;
    spinright(subr);
    spinleft(parent);
    /*  if (bf == 1)
      {
        parent->_bf = -1;
        subr->_bf = 0;
        subrl->_bf = 0;
      }
      else if (bf == -1)
      {
        parent->_bf = 0;
        subr->_bf = 1;
        subrl->_bf = 0;
      }
      else
      {
        subr->_bf = 0;
        subrl->_bf = 0;
        parent->_bf = 0;
      }*/
  }
  bool insert(const T& data)
  {
    OFKEY sk;
    if (_root == nullptr)
    {
      _root = new node(data);
      _root->_col = BLACK;
      return true;
    }
    node* cur = _root;
    node* parent = nullptr;
    while (cur)
    {
      if (sk(cur->_data) > sk(data))
      {
        parent = cur;
        cur = cur->_left;
      }
      else if (sk(cur->_data) < sk(data))
      {
        parent = cur;
        cur = cur->_right;
      }
      else
      {
        return false;
      }
    }
    cur = new node(data);
    if (sk(parent->_data) > sk(data))
    {
      parent->_left = cur;
    }
    else
    {
      parent->_right = cur;
    }
    cur->_parent = parent;
    while (parent && parent->_col == RED)
    {
      node* grandfather = parent->_parent;
      if (parent == grandfather->_left)
      {
        node* uncle = grandfather->_right;
        if (uncle && uncle->_col == RED)
        {
          parent->_col = BLACK;
          uncle->_col = BLACK;
          grandfather->_col = RED;
          cur = grandfather;
          parent = cur->_parent;
        }
        else
        {
          if (cur == parent->_right)
          {
            spinright(grandfather);
            parent->_col = BLACK;
            grandfather->_col = RED;
          }
          else
          {
            spinleft(parent);
            spinright(grandfather);
            cur->_col = BLACK;
            grandfather->_col = RED;
          }
          break;
        }
      }
      else
      {
        node* uncle = grandfather->_left;
        if (uncle && uncle->_col == RED)
        {
          parent->_col = BLACK;
          uncle->_col = BLACK;
          grandfather->_col = RED;
          cur = grandfather;
          parent = cur->_parent;
        }
        else
        {
          if (cur == parent->_left)
          {
            spinleft(grandfather);
            parent->_col = BLACK;
            grandfather->_col = RED;
          }
          else
          {
            spinright(parent);
            spinleft(grandfather);
            cur->_col = BLACK;
            grandfather->_col = RED;
          }
          break;
        }
      }
    }
    _root->_col = BLACK;
    return true;
  }
  bool Check(node* cur)
  {
    if (cur == nullptr)
      return true;
    if (cur->_col == RED && cur->_parent->_col == RED)
    {
      cout << cur->_data << "存在连续的红色节点" << endl;
      return false;
    }
    return Check(cur->_left)
      && Check(cur->_right);
  }
  bool IsBalance()
  {
    if (_root && _root->_col == RED)
      return false;
    return Check(_root);
  }
  void inorder()
  {
    _inorder(_root);
  }
  void _inorder(node* root)
  {
    if (root == nullptr)
      return;
    _inorder(root->_left);
    cout << root->_data << endl;
    _inorder(root->_right);
  }
  node* Find(const T& data)
  {
    OFKEY sk;
    
    node* cur = _root;
    node* parent = nullptr;
    while (cur)
    {
      if (sk(cur->_data) > sk(data))
      {
        parent = cur;
        cur = cur->_left;
      }
      else if (sk(cur->_data) < sk(data))
      {
        parent = cur;
        cur = cur->_right;
      }
      else
      {
        return cur;
      }
    }
    return nullptr;
  }
private:
  int treeheight(node* root)
  {
    if (root == nullptr)
      return 0;
    int leftheight = treeheight(root->_left);
    int rightheight = treeheight(root->_right);
    return leftheight > rightheight ? leftheight + 1 : rightheight + 1;
  }
  node* _root = nullptr;
};

6.迭代器

template<class T,class Pef,class Ptr>
struct _rbtreeIterator
{
  typedef rbtreenode<T> node;
  typedef _rbtreeIterator<T, Pef, Ptr> Self;
  Node* _node;
public:
  _rbtreeIterator(Node* node)
    :_node(node)
  {
    //默认构造
  
  }
  Self& operator++()
  {
   //迭代器++
  
  
  }
  Self& operator--()
  {
    //迭代器--
  }
  bool operator!=(Self& s)
  {
     //两个结点是否是同一结点
  
  
  }
  Pef operator*()
  {
    
    //重载*
  
  
  }
  Ptr operator->()
  {
  
    //重载->
  
  }
};

上面迭代器封装在list里面有说过

template<class T,class Pef,class Ptr>
struct _rbtreeIterator
{
  typedef rbtreenode<T> node;
  typedef _rbtreeIterator<T, Pef, Ptr> Self;
  Node* _node;
public:
  _rbtreeIterator(Node* node)
    :_node(node)
  {
    //默认构造
  
  }
  Self& operator++()
  {
   //迭代器++
  
  
  }
  Self& operator--()
  {
    //迭代器--
  }
  bool operator!=(Self& s)
  {
     //两个结点是否是同一结点
    return _node != s._node;
  
  
  }
  Pef operator*()
  {
    
    //重载*
    return _node->_data;
  
  
  }
  Ptr operator->()
  {
  
    //重载->
    return &_node->_data
  
  }
};

重点说一下迭代器++和–,

Self& operator++()
  {
   //迭代器++
    if (_node->_right)
    {
      Node* next = _node->_right;
      while (next->_left)
      {
        next = next->_left;
      
    
      }
  _node = next;
       }
    
  
  }

如果_node没有右结点的话,迭代器++下一个位置应该是哪里呢?

比方说_node在6的位置

Self& operator++()
  {
   //迭代器++
    if (_node->_right)
    {
      Node* next = _node->_right;
      while (next->_left)
      {
        next = next->_left;
      
    
      }
      _node = next;
    }
    else
    {
      Node* cur = _node;
      Node* parent = cur->_parent;
      while (parent && cur == parent->_right)//循环找孩子是父亲左的父亲,该父亲是下一个迭代器的结点
      {
        cur = parent;
        parent = parent->_parent;
      }
      _node = parent;
    
    }
   return *this;
  
  }

同理–

Self& operator--()
  {
    //迭代器--
    if (_node->_left)
    {
      Node* next = _node->_left;
      while (next->_right)
      {
        next = next->_right;
      }
      _node = next;
    }
    else
    {
      Node* cur = _node;
      Node* parent = cur->_parent;
      while (parent && cur == parent->_left)
      {
        cur = parent;
        parent = parent->_parent;
      }
      _node = parent;
    }
    return *this;
  }

红黑树调用迭代器

template<class K,class  T,class OFKEY>
class rbtree
{
  typedef  rbtreenode<T> node;
  typedef _rbtreeIterator<T, T&, T*>  iterator;
public:
  iterator begin()
  {
   //红黑树根结点的最左结点为最小
    node* cur = _root->_left;
    while (cur)
    {
      cur = cur->_left;
    }
    return iterator(cur);
  
  
  }
  iterator end()
  {
    //空
    return iterator(nullptr);
  }

7.set迭代器测试

#pragma once
#include"rbtree.h"
namespace zjw
{
  template<class K>
  class set {
    struct SETOFKEY
    {
      const K& operator()(const K&key)
      {
      
        return key;
      
      
      
      }
    };
  public:
    typedef typename rbtree<K, K, SETOFKEY>::iterator iterator;
    bool insert(const K& key)
    {
      return _st.insert(key);
    
  
    }
    iterator begin()
    {
      return _st.begin();
    
    }
    iterator end()
    {
      return _st.end();
    
    
    }
  private:
    rbtree<K, K,SETOFKEY>_st;
  };
  void testset()
  {
    set<int>s;
    int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16,14 };
    for (auto e : a)
    {
      s.insert(e);
    }
    set<int>::iterator it = s.begin();
    while (it != s.end())
    {
      cout << *it << endl;
      ++it;
    }
  
  
  }
}
#include<iostream>
#include<string>
#include"mymap.h"
#include"myset.h"
using namespace std;
int main()
{
  //zjw::testmap();
  zjw::testset();
}

8.map迭代器测试

#pragma once
#include"rbtree.h"
namespace zjw
{
  template<class K,class V>
  class map {
    struct MAPOFKEY
    {
      const K& operator()(const pair<K,V>&kv)
      { 
        return kv.first;
    
      }
    };
  public:
    typedef typename rbtree<K, pair<K,V>, MAPOFKEY>::iterator iterator;
    bool insert(const pair<K, V>& kv)
    {
    
      return _st.insert(kv);
    
  
    }
    iterator begin()
    {
      return _st.begin();
    }
    iterator end()
    {
      return _st.end();
    }
  private:
    rbtree<K,pair<K,V>, MAPOFKEY>_st;
  };
  void testmap()
  {
    map<string, int>sr;
    sr.insert(make_pair("b", 1));
    sr.insert(make_pair("think", 1));
    sr.insert(make_pair("cool", 1));
    map<string, int>::iterator it = sr.begin();
    //  //auto it = dic.begin();
    while (it != sr.end())
    {
      cout << it->first << ":" << it->second << endl;
      ++it;
    }
    cout << endl;
  
  }
}
#include<iostream>
#include<string>
#include"mymap.h"
#include"myset.h"
using namespace std;
int main()
{
  zjw::testmap();
  //zjw::testset();
}

9.实现map重载operator[]

根据map的insert我们需要修改底层的rbtree的insert实现

返回的是pair<iterator,bool>,这个类型在之前的map|set中有讲过

所以修改rbtree为(只展示修改部分)

pair<iterator,bool> insert(const T& data)
  {
    OFKEY sk;
    if (_root == nullptr)
    {
      _root = new node(data);
      _root->_col = BLACK;
      return  make_pair(iterator(_root),true); //true代表没有,插入,_root是要插入的结点     
    }
    node* cur = _root;
    node* parent = nullptr;
    while (cur)
    {
      if (sk(cur->_data) > sk(data))
      {
        parent = cur;
        cur = cur->_left;
      }
      else if (sk(cur->_data) < sk(data))
      {
        parent = cur;
        cur = cur->_right;
      }
      else
      {
            
        return   make_pair(iterator(cur),false);//查找,发现红黑树中有,则插入失败,cur为当前存在的结点
      }
    }
    cur = new node(data);
    node* flag = cur;//标记防止下边旋转找不到要插入的结点
    if (sk(parent->_data) > sk(data))
    {
      parent->_left = cur;
    }
    else
    {
      parent->_right = cur;
    }
    cur->_parent = parent;
    while (parent && parent->_col == RED)
    {
      node* grandfather = parent->_parent;
      if (parent == grandfather->_left)
      {
        node* uncle = grandfather->_right;
        if (uncle && uncle->_col == RED)
        {
          parent->_col = BLACK;
          uncle->_col = BLACK;
          grandfather->_col = RED;
          cur = grandfather;
          parent = cur->_parent;
        }
        else
        {
          if (cur == parent->_right)
          {
            spinright(grandfather);
            parent->_col = BLACK;
            grandfather->_col = RED;
          }
          else
          {
            spinleft(parent);
            spinright(grandfather);
            cur->_col = BLACK;
            grandfather->_col = RED;
          }
          break;
        }
      }
      else
      {
        node* uncle = grandfather->_left;
        if (uncle && uncle->_col == RED)
        {
          parent->_col = BLACK;
          uncle->_col = BLACK;
          grandfather->_col = RED;
          cur = grandfather;
          parent = cur->_parent;
        }
        else
        {
          if (cur == parent->_left)
          {
            spinleft(grandfather);
            parent->_col = BLACK;
            grandfather->_col = RED;
          }
          else
          {
            spinright(parent);
            spinleft(grandfather);
            cur->_col = BLACK;
            grandfather->_col = RED;
          }
          break;
        }
      }
    }
    _root->_col = BLACK;
    return make_pair(iterator(flag),true);//flag为新插入节点的地址
  }

而set为了让map可以重载operator[],set的insert返回值也应该是pair<iterator,bool>

测试map的operator[]

void test_map()
  {
    string arr[] = { "string","string","apple" ,"apple", "blalala","blalala" };
    map<string, int>countmap;
    for (auto& e : arr)
    {
      countmap[e]++;
    }
    
  
  for (auto& kv : countmap)
    {
      cout << kv.first << ":" << kv.second << endl;
    }
  }

10.红黑树实现析构

~rbtree()
  {
    destroy(_root);
  }
  void destroy(node* root)
  {
    if (root == nullptr)
      return;
    destroy(root->_left);
    destroy(root->_right);
    root = nullptr;
  }

后序析构

11.红黑树的拷贝构造

rbtree(rbtree<K, T, OFKEY>&st)
  {
    _root = copy(st._root);
  
  }
  node* copy(node* root)
  {
    if (root == nullptr)
      return nullptr;
    node* cur = new node(root->data);
    cur->_col = root->_col;
    cur->_left=copy(root->_left);
    if (cur->_left)
      cur->_left->_parent = cur;
    cur->_right = copy(root->_right);
    if (cur->_right)
      cur->_right->_parent = cur;
    return root;
  }

先序遍历一个一个拷贝构造

12红黑树的赋值

rbtree < K, T, OFKEY >operator=(rbtree<K, T, OFKEY>& st)
  {
    swap(_root, st._root);
  }

赋值的话,老的红黑树不用了,直接交换两个头节点的地址


13.源码分享

rbtree.cpp

#include<iostream>
#include<string>
#include"mymap.h"
#include"myset.h"
using namespace std;
int main()
{
  //zjw::testmap();
  //zjw::test_set();
  // zjw::test_map();
}

rbtree.h

#pragma once
#include<iostream>
#include<string>
using namespace std;
enum Colour
{
  RED,
  BLACK
};
template<class  T>
struct rbtreenode
{
  rbtreenode<T>* _left;
  rbtreenode<T>* _right;
  rbtreenode<T>* _parent;
  T _data;
  Colour _col;
  rbtreenode(const T& data)
    :_left(nullptr)
    , _right(nullptr)
    , _parent(nullptr)
    , _data(data)
    , _col(RED)
  {}
};
template<class T,class Pef,class Ptr>
struct _rbtreeIterator
{
  typedef rbtreenode<T> Node;
  typedef _rbtreeIterator<T, Pef, Ptr> Self;
  Node* _node;
public:
  _rbtreeIterator(Node* node)
    :_node(node)
  {
    //默认构造
  
  }
  Self& operator++()
  {
   //迭代器++
    if (_node->_right)
    {
      Node* next = _node->_right;
      while (next->_left)
      {
        next = next->_left;
      
    
      }
      _node = next;
    }
    else
    {
      Node* cur = _node;
      Node* parent = cur->_parent;
      while (parent && cur == parent->_right)
      {
        cur = parent;
        parent = parent->_parent;
      }
      _node = parent;
    
    }
    return *this;
    
  
  }
  Self& operator--()
  {
    //迭代器--
    if (_node->_left)
    {
      Node* next = _node->_left;
      while (next->_right)
      {
        next = next->_right;
      }
      _node = next;
    }
    else
    {
      Node* cur = _node;
      Node* parent = cur->_parent;
      while (parent && cur == parent->_left)
      {
        cur = parent;
        parent = parent->_parent;
      }
      _node = parent;
    }
    return *this;
  }
  bool operator!=(const Self& s) const
  {
     //两个结点是否是同一结点
    return _node != s._node;
  
  
  }
  Pef operator*()
  {
    
    //重载*
    return _node->_data;
  
  
  }
  Ptr operator->()
  {
  
    //重载->
    return &_node->_data;
  
  }
};
template<class K,class  T,class OFKEY>
class rbtree
{
  
public:
  typedef  rbtreenode<T> node;
  typedef _rbtreeIterator<T, T&, T*>  iterator;
  //typedef _rbtreeIterator<T, const T&,const T*>  con_iterator;
  ~rbtree()
  {
    destroy(_root);
  }
  void destroy(node* root)
  {
    if (root == nullptr)
      return;
    destroy(root->_left);
    destroy(root->_right);
    root = nullptr;
  }
  rbtree < K, T, OFKEY >operator=(rbtree<K, T, OFKEY>& st)
  {
    swap(_root, st._root);
  }
  node* copy(node* root)
  {
    if (root == nullptr)
      return nullptr;
    node* cur = new node(root->data);
    cur->_col = root->_col;
    cur->_left=copy(root->_left);
    if (cur->_left)
      cur->_left->_parent = cur;
    cur->_right = copy(root->_right);
    if (cur->_right)
      cur->_right->_parent = cur;
    return root;
  }
  iterator begin()
  {
   //红黑树根结点的最左结点为最小
    node* cur = _root;
    while (cur->_left)
    {
      cur = cur->_left;
    }
    return iterator(cur);
  
  
  }
  iterator end()
  {
    //空
    return iterator(nullptr);
  }
  //con_iterator begin() const
  //{
  //  //红黑树根结点的最左结点为最小
  //  node* cur = _root;
  //  while (cur->_left)
  //  {
  //    cur = cur->_left;
  //  }
  //  return con_iterator(cur);
  //}
  //con_iterator end() const
  //{
  //  //空
  //  return con_iterator(nullptr);
  //}
  void spinleft(node* parent)
  {
    node* subr = parent->_right;
    node* subrl = subr->_left;
    parent->_right = subrl;
    if (subrl)
      subrl->_parent = parent;
    subr->_left = parent;
    node* ppnode = parent->_parent;
    parent->_parent = subr;
    if (ppnode == nullptr)
    {
      _root = subr;
      subr->_parent = nullptr;
    }
    else
    {
      if (ppnode->_left == parent)
      {
        ppnode->_left = subr;
        subr->_parent = ppnode;
      }
      else
      {
        ppnode->_right = subr;
        subr->_parent = ppnode;
      }
    }
  }
  void spinright(node* parent)
  {
    node* subl = parent->_left;
    node* sublr = subl->_right;
    parent->_left = sublr;
    if (sublr)
      sublr->_parent = parent;
    subl->_right = parent;
    node* ppnode = parent->_parent;
    parent->_parent = subl;
    if (ppnode == nullptr)
    {
      _root = subl;
      subl->_parent = nullptr;
    }
    else
    {
      if (ppnode->_left == parent)
      {
        ppnode->_left = subl;
        subl->_parent = ppnode;
      }
      else
      {
        ppnode->_right = subl;
        subl->_parent = ppnode;
      }
    }
  }
  void spinlr(node* parent)
  {
    node* subl = parent->_left;
    node* sublr = subl->_right;
    //int bf = sublr->_bf;
    spinleft(parent->_left);
    spinright(parent);
    /*  if (bf == 1)
      {
        subl->_bf = -1;
        sublr->_bf = 0;
        parent->_bf = 0;
      }
      else if (bf == -1)
      {
        subl->_bf = 0;
        sublr->_bf = 0;
        parent->_bf = 1;
      }
      else
      {
        subl->_bf = 0;
        sublr->_bf = 0;
        parent->_bf = 0;
      }*/
  }
  void spinrl(node* parent)
  {
    node* subr = parent->_right;
    node* subrl = subr->_left;
    //int bf = subrl->_bf;
    spinright(subr);
    spinleft(parent);
    /*  if (bf == 1)
      {
        parent->_bf = -1;
        subr->_bf = 0;
        subrl->_bf = 0;
      }
      else if (bf == -1)
      {
        parent->_bf = 0;
        subr->_bf = 1;
        subrl->_bf = 0;
      }
      else
      {
        subr->_bf = 0;
        subrl->_bf = 0;
        parent->_bf = 0;
      }*/
  }
  pair<iterator,bool> insert(const T& data)
  {
    OFKEY sk;
    if (_root == nullptr)
    {
      _root = new node(data);
      _root->_col = BLACK;
      return  make_pair(iterator(_root),true); //true代表没有,插入,_root是要插入的结点     
    }
    node* cur = _root;
    node* parent = nullptr;
    while (cur)
    {
      if (sk(cur->_data) > sk(data))
      {
        parent = cur;
        cur = cur->_left;
      }
      else if (sk(cur->_data) < sk(data))
      {
        parent = cur;
        cur = cur->_right;
      }
      else
      {
            
        return   make_pair(iterator(cur),false);//查找,发现红黑树中有,则插入失败,cur为当前存在的结点
      }
    }
    cur = new node(data);
    node* flag = cur;//标记防止下边旋转找不到要插入的结点
    if (sk(parent->_data) > sk(data))
    {
      parent->_left = cur;
    }
    else
    {
      parent->_right = cur;
    }
    cur->_parent = parent;
    while (parent && parent->_col == RED)
    {
      node* grandfather = parent->_parent;
      if (parent == grandfather->_left)
      {
        node* uncle = grandfather->_right;
        if (uncle && uncle->_col == RED)
        {
          parent->_col = BLACK;
          uncle->_col = BLACK;
          grandfather->_col = RED;
          cur = grandfather;
          parent = cur->_parent;
        }
        else
        {
          if (cur == parent->_right)
          {
            spinright(grandfather);
            parent->_col = BLACK;
            grandfather->_col = RED;
          }
          else
          {
            spinleft(parent);
            spinright(grandfather);
            cur->_col = BLACK;
            grandfather->_col = RED;
          }
          break;
        }
      }
      else
      {
        node* uncle = grandfather->_left;
        if (uncle && uncle->_col == RED)
        {
          parent->_col = BLACK;
          uncle->_col = BLACK;
          grandfather->_col = RED;
          cur = grandfather;
          parent = cur->_parent;
        }
        else
        {
          if (cur == parent->_left)
          {
            spinleft(grandfather);
            parent->_col = BLACK;
            grandfather->_col = RED;
          }
          else
          {
            spinright(parent);
            spinleft(grandfather);
            cur->_col = BLACK;
            grandfather->_col = RED;
          }
          break;
        }
      }
    }
    _root->_col = BLACK;
    return make_pair(iterator(flag),true);//flag为新插入节点的地址
  }
  bool Check(node* cur)
  {
    if (cur == nullptr)
      return true;
    if (cur->_col == RED && cur->_parent->_col == RED)
    {
      cout << cur->_data << "存在连续的红色节点" << endl;
      return false;
    }
    return Check(cur->_left)
      && Check(cur->_right);
  }
  bool IsBalance()
  {
    if (_root && _root->_col == RED)
      return false;
    return Check(_root);
  }
  void inorder()
  {
    _inorder(_root);
  }
  void _inorder(node* root)
  {
    if (root == nullptr)
      return;
    _inorder(root->_left);
    cout << root->_data << endl;
    _inorder(root->_right);
  }
  node* Find(const T& data)
  {
    OFKEY sk;
    
    node* cur = _root;
    node* parent = nullptr;
    while (cur)
    {
      if (sk(cur->_data) > sk(data))
      {
        parent = cur;
        cur = cur->_left;
      }
      else if (sk(cur->_data) < sk(data))
      {
        parent = cur;
        cur = cur->_right;
      }
      else
      {
        return cur;
      }
    }
    return nullptr;
  }
private:
  int treeheight(node* root)
  {
    if (root == nullptr)
      return 0;
    int leftheight = treeheight(root->_left);
    int rightheight = treeheight(root->_right);
    return leftheight > rightheight ? leftheight + 1 : rightheight + 1;
  }
  node* _root = nullptr;
};

mymap.h

#pragma once
#include"rbtree.h"
namespace zjw
{
  template<class K,class V>
  class map {
    struct MAPOFKEY
    {
      const K& operator()(const pair<K,V>&kv)
      { 
        return kv.first;
    
      }
    };
  public:
    typedef typename rbtree<K, pair< K,V>, MAPOFKEY>::iterator iterator;
    //typedef typename rbtree<K, pair<const K, V>, MAPOFKEY>::con_iterator con_iterator;
    
    iterator begin()
    {
      return _st.begin();
    }
    iterator end()
    {
      return _st.end();
    }
    pair<iterator, bool> insert(const pair<K, V>& kv)
    {
      return _st.insert(kv);
    }
    V& operator[](const K& key)
    {
      pair<iterator,bool> ret=_st.insert(make_pair(key, V()));
      return ret.first->second;
      
    
    }
  
  /*  con_iterator begin() const
    {
      return _st.begin();
    }
    con_iterator end() const
    {
      return _st.end();
    }*/
  
  private:
    rbtree<K, pair< K, V>, MAPOFKEY>_st;
  };
  void test_map()
  {
    string arr[] = { "string","string","apple" ,"apple", "blalala","blalala" };
    map<string, int>countmap;
    for (auto& e : arr)
    {
      countmap[e]++;
    }
    
  
  for (auto& kv : countmap)
    {
      cout << kv.first << ":" << kv.second << endl;
    }
  }
  //void testmap()
  //{
  //    //map< string,  int>sr;
  //    //sr.insert(make_pair("b", 1));
  //    //sr.insert(make_pair("think", 1));
  //    //sr.insert(make_pair("cool", 1));
  //    //map< string, int>::con_iterator it = sr.begin();
  //      //auto it = dic.begin();
  //    //while (it != sr.end())
  //    //{
  //    //  it->second += 1;
  //    //
  //    //  cout << it->first << ":" << it->second << endl;
  //    //  ++it;
  //    //}
  //    //cout << endl;
  //  
  //  
  //}
}

myset.h

#pragma once
#include"rbtree.h"
namespace zjw
{
  template<class K>
  class set {
    struct SETOFKEY
    {
      const K& operator()(const K& key)
      {
        return key;
      }
    };
  public:
    typedef typename rbtree<K,  K, SETOFKEY>::iterator iterator;
    //typedef typename rbtree<K, const K, SETOFKEY>::con_iterator con_iterator;
    pair<iterator, bool>  insert(const K& key)
    {
      return _st.insert(key);
    }
    iterator begin()
    {
      return _st.begin();
    }
    iterator end()
    {
      return _st.end();
    }
  /*  con_iterator begin() const
    {
      return _st.begin();
    }
    con_iterator end() const
    {
      return  _st.end();
    }*/
  private:
    rbtree<K, K, SETOFKEY>_st;
  };
  //void PrintSet(const set<int>& s)
  //{
  //  for (auto e : s)
  //  {
  //    //e += 1;
  //    cout << e << endl;
  //  }
  //}
  //void test_set()
  //{
  //  set<int> s;
  //  s.insert(4);
  //  s.insert(2);
  //  s.insert(5);
  //  s.insert(15);
  //  s.insert(7);
  //  s.insert(1);
  //  s.insert(5);
  //  s.insert(7);
  //  set<int>::iterator it = s.begin();
  //  while (it != s.end())
  //  {
  //    
  //    cout << *it << endl;
  //    ++it;
  //  }
  //  PrintSet(s);
  //}
}
    //set<int>::iterator it = s.begin();
    //while (it != s.end())
    //{
    //  //*it += 5;
    //  cout << *it << " ";
    //  ++it;
    //}
    //cout << endl;
  //void testset()
  //{
  //   set< int>s;
  //  int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16,14 };
  //  for (auto e : a)
  //  {
  //    s.insert(e);
  //  }
  //  set<int>::iterator it = s.begin();
  //  while (it != s.end())
  //  {
  //    
  //    cout << *it << endl;
  //    ++it;
  //  }
  //}
目录
相关文章
|
1月前
|
算法
你对Collection中Set、List、Map理解?
你对Collection中Set、List、Map理解?
64 18
你对Collection中Set、List、Map理解?
|
27天前
|
存储 缓存 安全
只会“有序无序”?面试官嫌弃的List、Set、Map回答!
小米,一位热衷于技术分享的程序员,通过与朋友小林的对话,详细解析了Java面试中常见的List、Set、Map三者之间的区别,不仅涵盖了它们的基本特性,还深入探讨了各自的实现原理及应用场景,帮助面试者更好地准备相关问题。
59 20
|
2月前
|
存储 C++ 容器
【C++】map、set基本用法
本文介绍了C++ STL中的`map`和`set`两种关联容器。`map`用于存储键值对,每个键唯一;而`set`存储唯一元素,不包含值。两者均基于红黑树实现,支持高效的查找、插入和删除操作。文中详细列举了它们的构造方法、迭代器、容量检查、元素修改等常用接口,并简要对比了`map`与`set`的主要差异。此外,还介绍了允许重复元素的`multiset`和`multimap`。
37 3
【C++】map、set基本用法
|
2月前
|
存储 算法 C++
【C++】unordered_map(set)
C++中的`unordered`容器(如`std::unordered_set`、`std::unordered_map`)基于哈希表实现,提供高效的查找、插入和删除操作。哈希表通过哈希函数将元素映射到特定的“桶”中,每个桶可存储一个或多个元素,以处理哈希冲突。主要组成部分包括哈希表、哈希函数、冲突处理机制、负载因子和再散列,以及迭代器。哈希函数用于计算元素的哈希值,冲突通过开链法解决,负载因子控制哈希表的扩展。迭代器支持遍历容器中的元素。`unordered_map`和`unordered_set`的插入、查找和删除操作在理想情况下时间复杂度为O(1),但在冲突较多时可能退化为O(n)。
28 5
|
2月前
|
存储 C++ 容器
【C++】map的模拟实现
C++中的`map`是STL中的一种关联容器,存储键值对且键唯一。`map`基于红黑树实现,自动按键排序,支持动态调整、复杂数据类型、丰富的成员函数及双向迭代器。插入、查找等操作保证了对数时间复杂度,适用于需要快速查找和有序存储的场景。
26 3
|
2月前
|
存储 C++ 容器
【C++】set模拟实现
C++中的`set`是STL提供的一种关联容器,用于存储唯一元素并自动按特定顺序(默认升序)排序。其内部通过红黑树实现,保证了高效的插入、删除和查找操作,时间复杂度均为O(log n)。`set`支持迭代器遍历,提供了良好的数据访问接口。
43 3
|
3月前
|
存储 JavaScript 前端开发
Set、Map、WeakSet 和 WeakMap 的区别
在 JavaScript 中,Set 和 Map 用于存储唯一值和键值对,支持多种操作方法,如添加、删除和检查元素。WeakSet 和 WeakMap 则存储弱引用的对象,有助于防止内存泄漏,适合特定场景使用。
|
3月前
|
存储 缓存 Java
【用Java学习数据结构系列】HashMap与TreeMap的区别,以及Map与Set的关系
【用Java学习数据结构系列】HashMap与TreeMap的区别,以及Map与Set的关系
47 1
|
4月前
|
算法
你对Collection中Set、List、Map理解?
你对Collection中Set、List、Map理解?
45 5
|
2月前
|
存储 编译器 C语言
【c++丨STL】string类的使用
本文介绍了C++中`string`类的基本概念及其主要接口。`string`类在C++标准库中扮演着重要角色,它提供了比C语言中字符串处理函数更丰富、安全和便捷的功能。文章详细讲解了`string`类的构造函数、赋值运算符、容量管理接口、元素访问及遍历方法、字符串修改操作、字符串运算接口、常量成员和非成员函数等内容。通过实例演示了如何使用这些接口进行字符串的创建、修改、查找和比较等操作,帮助读者更好地理解和掌握`string`类的应用。
66 2