【二叉树】数据结构——BST二叉树基本概念及算法设计(插入、删除、遍历操作)

简介: 【二叉树】数据结构——BST二叉树基本概念及算法设计(插入、删除、遍历操作)

一、二叉树基本概念

二叉树的其中一个重要应用,是提供一种快速查找数据的方法,即:将数据节点按照某种规律形成一棵二叉树,然后利用二叉树特殊的逻辑结构减少搜索数据的次数,提高查找的效率。

这种按照某种规律构建,用来提高搜索性能的二叉树,被称为搜索二叉树(Binary Search Tree),即BST。

具体而言,二叉树提高搜索效率的秘诀在于:按照“小-中-大”(当然“大-中-小”也是一样的)的规律来存储数据,即对于任意一个节点,都可以明确找到其值大于或等于其左孩子节点,且小于或等于其右孩子节点。如下图所示:

比如需要用二叉树储存整个年级的数学成绩

由于树中所有的节点均满足“小-中-大”的规律,因此当从根开始查找某个节点时速度比顺序查找要快得多,比如要找节点38,当发现38大于根节点13后,就可以确定13的左子树一定没有38,这就去掉了半边子树的节点。

因此,二叉搜索树又被称为二叉排序树、二叉查找树。

实际上,对于一棵二叉树而言,其搜索节点的时间复杂度,最糟糕的情形是其退化为链表,最乐观的情形是完美或完全二叉树,那么其搜索时间复杂度就是介于:

最差:T(n)=O(n)

最优:T(n)=O(log2n)

二、二叉树的算法设计

1、构建二叉树节点

struct node
{
//数据域
datatype data;

//指针域
struct node * Lchild;//指向左孩子指针
struct node * Rchild;//指向右孩子指针
};

2、插入节点

对于BST而言,插入一个节点主要是要保持其“小-中-大”的逻辑不变,因此插入的节点的逻辑可以从根节点开始,一步步寻找新节点的“最终归宿”,比如在如下BST中,要插入新节点16,最终应该插入到节点17的左孩子处。

在实现插入算法的时候,由于树状结构本身是递归的,因此可以使用递归函数更优雅地实现插入算法。如下:

情况①:

第一次插入节点给这个二叉树,二叉树是空的,则直接把Root根指针指向新节点

struct node *Root=NULL;
Root = bstInsert(Root,25);

对应插入代码为:

if(root == NULL)
  return new;

情况②:

非第一次插入节点

递进深入二叉树

递进的条件:

只要节点的Lchild或Rchild不为NULL 则以下一个节点作为根 继续深入

回归的条件:

到了 尾巴为NULL 同时满足大小关系条件 则返回当前节点地址

// 将新数据data(以整型为例),插入到二叉搜索树root中
// 插入节点后,返回新的BST的根
node *bstInsert(node *root, int data)
{
    // 准备好新节点,并将数据填入其中
    node *new = (node *)malloc(sizeof(node));
    new->data = data;
    
     new->lchild = NULL;
    new->rchild = NULL;

    // 若此时BST为空,则new称为二叉树的根节点
    if(root == NULL)
        return new;//只要满足这个条件就开始回归

    // 若新节点比根节点小,那么新节点应该插入左子树中
    // 至于插入到左子树的具体什么位置就不用管了,直接递归即可
    if(data < root->data)
        root->lchild = bstInsert(root->lchild, data);//左递进

    // 若新节点比根节点大,那么新节点应该插入右子树中
    // 至于插入到右子树的具体什么位置就不用管了,直接递归即可
    else if(data > root->data)
        root->rchild = bstInsert(root->rchild, data);//右

    // 若已存在,则不处理
    else
    {
        printf("%d已存在\n", data);
    }
    free(new);
    return root;
}

3、删除节点

(1)删除一个BST的节点要比插入困难一点,但同样是要遵循一个原则,即:删除节点后仍然要保持“小-中-大”的逻辑关系

(2)假设要删除的节点是x,大体思路如下:

  • 若要删除的节点小于根节点,则递归地在左子树中删除x
  • 若要删除的节点大于根节点,则递归地在右子树中删除x

若要删除的节点恰好就是根节点,则分如下几种情况:

  • 根节点若有左子树,则用左子树中最大的节点max替换根节点,并在左子树中递归删除max
  • 否则,若有右子树,则用右子树中最小的节点min替换根节点,并在右子树中递归删除min
  • 否则,直接删除根节点

(3)举个例子

以下图为例,假设在一棵二叉树中要删除节点15,在找到节点之后,判断其有左子树,那么就沿着其左子树找到最右下角(最大)的节点19,替换要删除的节点15,然后再将多余的节点19删掉:

(4)示例代码

// 将数据(以整型为例)data从二叉树中删除
// 并返回删除之后的二叉树的根
node *bstRemove(node *root, int data)
{
    if(root == NULL)
        return NULL;

    // 若data小于根节点,则递归地在左子树中删除它
    if(data < root->data)
        root->lchild = bstRemove(root->lchild, data);

    // 若data大于根节点,则递归地在右子树中删除它
    else if(data > root->data)
        root->rchild = bstRemove(root->rchild, data);

    // 若data恰好就是根节点,则分如下几种情况:  
    else
    {
        // a. 根节点若有左子树,则用左子树中最大的节点max替换根节点
        //    并在左子树中递归删除max  
        if(root->lchild != NULL)
        {
            node *max;
            for(max=root->lchild; max->rchild!=NULL;
                max=max->rchild);

            root->data = max->data;
            root->lchild = bstRemove(root->lchild, max->data);
        }

        // b. 否则,若有右子树,则用右子树中最小的节点min替换根节点
        //    并在右子树中递归删除min  
        else if(root->rchild != NULL)
        {
node *tmp;
            for(tmp=root->rchild; tmp->lchild!=NULL;
                tmp=tmp->lchild);

            root->data = tmp->data;
            root->rchild = bstRemove(root->rchild, tmp->data);
        }

        // c. 否则,直接删除根节点
        else
        {
            free(root);
            return NULL;
        }
    }

    return root;
}

(5)总结

  • 先递进的找到待删除节点
  • 根据找到待删除节点分析其三种情况 有左子树—优先找到左子树最大数的节点 只有右子树,从右子树中找到最小的那个数的节点
    待删除节点时叶子–直接删除—开始回归
  • 如果上面的红色部分情况 找到了左子树中最大 或找了右子树最小的 拿这个数替换掉待删除节点的树
  • 把找到的这个替换的节点作为新的待删除节点,重复上面步骤直到满足回归条件

4、遍历二叉树

// 前序遍历
void preOrder(node *root)
{
//1 空树  2 遇到一个度为0/1的节点  ---- 回归条件
    if(root == NULL)
        return;

    // 先访问根节点
    printf("%d", root->data);

    // 再依次使用前序算法,遍历其左、右子树 --- 递进
    preOrder(root->lchild);
    
    preOrder(root->rchild);
}

// 中序遍历
void inOrder(node *root)
{
    if(root == NULL)
        return;

    // 先访问左子树
    inOrder(root->lchild);

    // 再访问根节点
    printf("%d", root->data);

    // 再访问右子树
    inOrder(root->rchild);
}

// 后序遍历
void postOrder(node *root)
{
    if(root == NULL)
        return;

    // 先依次使用后序算法,遍历其左、右子树
    postOrder(root->lchild);
    postOrder(root->rchild);

    // 再访问根节点
    printf("%d", root->data);
}

5、层次遍历

对于按层遍历,则需要借助队列来达到这一目的。具体做法是:

  • 创建一个队列,并将根节点指针入队
  • 判断队列是否为空:
    a. 是则退出程序
  • b. 否则让队头元素出队,并将队头的左右孩子依次入队
    c. 循环此步骤

示例代码:

void levelOrder(node *root)
{
    if(root == NULL)
        return;

    // 将根节点入队
    linkQueue *q = initQueue();
    enQueue(q, root);

    node *tmp;
    while(!isEmpty(q))
    {
        // 出队并访问队头
        outQueue(q, &tmp);
        printf("%d\t", tmp->data);

        // 依次将其左右孩子(若有)入队
        if(tmp->lchild != NULL)
            enQueue(q, tmp->lchild);

        if(tmp->rchild != NULL)
            enQueue(q, tmp->rchild);
    }
    printf("\n");
}
相关文章
|
1月前
|
存储 算法
数据结构与算法学习二二:图的学习、图的概念、图的深度和广度优先遍历
这篇文章详细介绍了图的概念、表示方式以及深度优先遍历和广度优先遍历的算法实现。
51 1
数据结构与算法学习二二:图的学习、图的概念、图的深度和广度优先遍历
|
6天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
9天前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
28 5
|
12天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
23 0
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
18 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 算法 数据管理
数据结构与算法学习二零:二叉排序树(BST)、平衡二叉树(AVL)
这篇文章通过需求分析、代码实现和测试验证,详细介绍了二叉排序树的创建、遍历和删除操作,以及二叉平衡树(AVL)的自平衡特性和单旋转操作,旨在提高树结构在数据管理中的效率和性能。
27 0
数据结构与算法学习二零:二叉排序树(BST)、平衡二叉树(AVL)
|
1月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
20 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
14天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
90 9
|
5天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
14 1
|
8天前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。