Largest Point
Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 474 Accepted Submission(s): 213
Problem Description
Given the sequence
A with
n integers
t1,t2,⋯,tn. Given the integral coefficients
a and
b. The fact that select two elements
ti and
tj of
A and
i≠j to maximize the value of
at2i+btj, becomes the largest point.
Input
An positive integer
T, indicating there are
T test cases.
For each test case, the first line contains three integers corresponding to n (2≤n≤5×106), a (0≤|a|≤106) and b (0≤|b|≤106). The second line contains nintegers t1,t2,⋯,tn where 0≤|ti|≤106 for 1≤i≤n.
The sum of n for all cases would not be larger than 5×106.
For each test case, the first line contains three integers corresponding to n (2≤n≤5×106), a (0≤|a|≤106) and b (0≤|b|≤106). The second line contains nintegers t1,t2,⋯,tn where 0≤|ti|≤106 for 1≤i≤n.
The sum of n for all cases would not be larger than 5×106.
Output
The output contains exactly
T lines.
For each test case, you should output the maximum value of at2i+btj.
For each test case, you should output the maximum value of at2i+btj.
Sample Input
2 3 2 1 1 2 3 5 -1 0 -3 -3 0 3 3
Sample Output
Case #1: 20 Case #2: 0
Source
题目大意:有T组数据,然后第一行有三个数n, a, b;
接下来有n行arr[i],求a * arr[i] + b * arr[j] 的最大值(i != j)
解题思路:
分四种情况讨论,有点麻烦,但是却管用,先对arr数组排一下序,
然后在对绝对值数组data排一下序,在判断一下是不是绝对值数组的最值跟原先数组的最值一样,
最后在确定是不是有多个最值就okl
上代码:
/** 2015 - 09 - 20 中午 Author: ITAK Motto: 今日的我要超越昨日的我,明日的我要胜过今日的我, 以创作出更好的代码为目标,不断地超越自己。 **/ #include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <vector> #include <queue> #include <algorithm> #include <set> using namespace std; typedef long long LL; const int maxn = 5*1e6+5; const double eps = 1e-7; LL arr[maxn], data[maxn]; int main() { int T; scanf("%d",&T); for(int cas=1; cas<=T; cas++) { int m, a, b; scanf("%d%d%d",&m,&a,&b); for(int i=0; i<m; i++) { scanf("%lld",&arr[i]); data[i] = abs(arr[i]); } sort(data, data+m); sort(arr, arr+m); LL ans; if(a < 0) { if(b <= 0) { if(abs(arr[0]) != data[0]) { ans = data[0]*data[0]*a + arr[0]*b; } else { if(data[0] != data[1]) ans = data[0]*data[0]*a + arr[1]*b; else ans = data[0]*data[0]*a + arr[0]*b; } } else { if(abs(arr[m-1]) != data[0]) { ans = data[0]*data[0]*a + arr[m-1]*b; } else { if(data[0] != data[1]) ans = data[0]*data[0]*a + arr[m-2]*b; else ans = data[0]*data[0]*a + arr[m-1]*b; } } } else { if(b <= 0) { if(abs(arr[0]) != data[m-1]) { ans = data[m-1]*data[m-1]*a + arr[0]*b; } else { if(data[m-1] != data[m-2]) ans = data[m-1]*data[m-1]*a + arr[1]*b; else ans = data[m-1]*data[m-1]*a + arr[0]*b; } } else { if(abs(arr[m-1]) != data[m-1]) { ans = data[m-1]*data[m-1]*a + arr[m-1]*b; } else { if(data[m-1] != data[m-2]) ans = data[m-1]*data[m-1]*a + arr[m-2]*b; else ans = data[m-1]*data[m-1]*a + arr[m-1]*b; } } } printf("Case #%d: %lld\n",cas, ans); } return 0; }