【从零开始学习深度学习】24.神经网络中池化层的作用:最大池化与平均池化

简介: 【从零开始学习深度学习】24.神经网络中池化层的作用:最大池化与平均池化

本文将介绍池化(pooling)层,它的主要目的是为了缓解卷积层对位置的过度敏感性

1. 二维最大池化层和平均池化层

同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出。不同于卷积层里计算输入和核的互相关性,池化层直接计算池化窗口内元素的最大值或者平均值。该运算也分别叫做最大池化或平均池化。在二维最大池化中,池化窗口从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动。当池化窗口滑动到某一位置时,窗口中的输入子数组的最大值即输出数组中相应位置的元素。

图1展示了池化窗口形状为2×2的最大池化,阴影部分为第一个输出元素及其计算所使用的输入元素。输出数组的高和宽分别为2,其中的4个元素由取最大值运算max得出:

image.png

二维平均池化的工作原理与二维最大池化类似,但将最大运算符替换成平均运算符。池化窗口形状为p×q的池化层称为p×q池化层,其中的池化运算叫作p×q池化。

让我们再次回到本节开始提到的物体边缘检测的例子。现在我们将卷积层的输出作为2×2最大池化的输入。设该卷积层输入是X、池化层输出为Y。无论是X[i, j]X[i, j+1]值不同,还是X[i, j+1]X[i, j+2]不同,池化层输出均有Y[i, j]=1。也就是说,使用2×2最大池化层时,只要卷积层识别的模式在高和宽上移动不超过一个元素,我们依然可以将它检测出来。

定义一个池化层向前计算的函数pool2d

import torch
from torch import nn
def pool2d(X, pool_size, mode='max'):
    # 默认使用最大池化,平均池化将Mode设置为avg
    X = X.float()
    p_h, p_w = pool_size
    Y = torch.zeros(X.shape[0] - p_h + 1, X.shape[1] - p_w + 1)
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()       
    return Y

我们可以构造图1中的输入数组X来验证二维最大池化层的输出。

X = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
pool2d(X, (2, 2))

输出:

tensor([[4., 5.],
        [7., 8.]])

同时我们实验一下平均池化层。

pool2d(X, (2, 2), 'avg')

输出:

tensor([[2., 3.],
        [5., 6.]])

2. 池化层的填充和步幅

同卷积层一样,池化层也可以在输入的高和宽两侧的填充并调整窗口的移动步幅来改变输出形状。池化层填充和步幅与卷积层填充和步幅的工作机制一样。我们将通过nn模块里的二维最大池化层MaxPool2d来演示池化层填充和步幅的工作机制。我们先构造一个形状为(1, 1, 4, 4)的输入数据,前两个维度分别是批量和通道。

X = torch.arange(16, dtype=torch.float).view((1, 1, 4, 4))
X

输出:

tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]]]])

默认情况下,MaxPool2d实例里步幅和池化窗口形状相同。下面使用形状为(3, 3)的池化窗口,默认获得形状为(3, 3)的步幅。

pool2d = nn.MaxPool2d(3)
pool2d(X) 

输出:

tensor([[[[10.]]]])

我们可以手动指定步幅和填充。

pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)

输出:

tensor([[[[ 5.,  7.],
          [13., 15.]]]])

指定非正方形的池化窗口,并分别指定高和宽上的填充和步幅

pool2d = nn.MaxPool2d((2, 4), padding=(1, 2), stride=(2, 3))
pool2d(X)

输出:

tensor([[[[ 1.,  3.],
          [ 9., 11.],
          [13., 15.]]]])

3. 对多通道进行池化

在处理多通道输入数据时,池化层对每个输入通道分别池化,而不是像卷积层那样将各通道的输入按通道相加。这意味着池化层的输出通道数与输入通道数相等。下面将数组XX+1在通道维上连结来构造通道数为2的输入。

X = torch.cat((X, X + 1), dim=1)
X

输出:

tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]],
         [[ 1.,  2.,  3.,  4.],
          [ 5.,  6.,  7.,  8.],
          [ 9., 10., 11., 12.],
          [13., 14., 15., 16.]]]])

池化后,我们发现输出通道数仍然是2。

pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)

输出:

tensor([[[[ 5.,  7.],
          [13., 15.]],
         [[ 6.,  8.],
          [14., 16.]]]])

4. 总结

  • 最大池化和平均池化分别取池化窗口中输入元素的最大值和平均值作为输出。
  • 池化层的一个主要作用是缓解卷积层对位置的过度敏感性
  • 可以指定池化层的填充和步幅。
  • 池化层的输出通道数跟输入通道数相同

相关文章
|
19小时前
|
机器学习/深度学习 开发框架 自然语言处理
深度学习中的自动学习率调整方法探索与应用
传统深度学习模型中,学习率的选择对训练效果至关重要,然而其调整通常依赖于经验或静态策略。本文探讨了现代深度学习中的自动学习率调整方法,通过分析不同算法的原理与应用实例,展示了这些方法在提高模型收敛速度和精度方面的潜力。 【7月更文挑战第14天】
|
1天前
|
机器学习/深度学习 PyTorch 算法框架/工具
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
14 9
|
2天前
|
网络协议 程序员 定位技术
学习网络的第一步:全面解析OSI与TCP/IP模型
**网络基础知识概览:** 探索网络通信的关键模型——OSI七层模型和TCP/IP五层模型。OSI模型(物理、数据链路、网络、传输、会话、表示、应用层)提供理论框架,而TCP/IP模型(物理、数据链路、网络、传输、应用层)更为实际,合并了会话、表示和应用层。两者帮助理解数据在网络中的传输过程,为网络设计和管理提供理论支持。了解这些模型,如同在复杂的网络世界中持有了地图。
8 2
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的未来:深度学习与神经网络的融合
【7月更文挑战第11天】随着科技的不断进步,人工智能(AI)领域正迎来前所未有的发展机遇。本文将深入探讨深度学习和神经网络这两大技术如何相互融合,共同推动AI的未来走向。我们将从基础概念出发,逐步解析它们在实际应用中的协同效应,并预测未来可能的发展趋势。
|
3天前
|
机器学习/深度学习 数据采集 监控
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
**神经网络与AI学习概览** - 探讨神经网络设计,包括MLP、RNN、CNN,激活函数如ReLU,以及隐藏层设计,强调网络结构与任务匹配。 - 参数初始化与优化涉及Xavier/He初始化,权重和偏置初始化,优化算法如SGD、Adam,针对不同场景选择。 - 学习率调整与正则化,如动态学习率、L1/L2正则化、早停法和Dropout,以改善训练和泛化。
4 0
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
|
8天前
|
机器学习/深度学习 自然语言处理 语音技术
深度学习中的迁移学习:优势与应用探索
传统深度学习模型在数据不足或特定任务下表现不佳,迁移学习则通过利用预训练模型的知识来解决这一问题。本文探讨了迁移学习的基本原理、不同方法以及在实际应用中的案例分析,旨在帮助读者更好地理解和应用迁移学习技术。 【7月更文挑战第6天】
|
9天前
|
机器学习/深度学习 人工智能 计算机视觉
好的资源-----打卡机+Arm+Qt+OpenCV嵌入式项目-基于人脸识别的考勤系统-----B站神经网络与深度学习,商城
好的资源-----打卡机+Arm+Qt+OpenCV嵌入式项目-基于人脸识别的考勤系统-----B站神经网络与深度学习,商城
|
9天前
|
机器学习/深度学习 物联网 区块链
未来触手可及:探索区块链、物联网和虚拟现实的革新之路探索深度学习中的卷积神经网络(CNN)
随着科技的飞速发展,新兴技术如区块链、物联网(IoT)和虚拟现实(VR)正不断重塑我们的工作和生活方式。本文将深入探讨这些技术的最新发展趋势,分析它们如何在不同行业实现应用革新,并预测其未来的融合潜力。我们将从技术的基本原理出发,通过案例研究,揭示它们在现实世界中的创新应用场景,并讨论面临的挑战与机遇。 在机器学习领域,卷积神经网络(CNN)已成为图像识别和处理的基石。本文深入探讨了CNN的核心原理、架构以及在多个领域的应用实例,旨在为读者提供从理论到实践的全面理解。
|
9天前
|
机器学习/深度学习 传感器 人工智能
探索人工智能的未来:深度学习与神经网络的融合
本文旨在探讨人工智能领域的最新趋势,特别是深度学习和神经网络如何相互融合,推动技术革新。我们将通过具体的案例分析,展示这些技术在现实世界中的应用,并讨论其对社会的潜在影响。文章将提供对当前研究进展的深入理解,以及对未来发展的预测。
20 0
|
11天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:迁移学习与领域自适应教程
【7月更文挑战第3天】 使用Python实现深度学习模型:迁移学习与领域自适应教程
11 0