【从零开始学习深度学习】24.神经网络中池化层的作用:最大池化与平均池化

简介: 【从零开始学习深度学习】24.神经网络中池化层的作用:最大池化与平均池化

本文将介绍池化(pooling)层,它的主要目的是为了缓解卷积层对位置的过度敏感性

1. 二维最大池化层和平均池化层

同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出。不同于卷积层里计算输入和核的互相关性,池化层直接计算池化窗口内元素的最大值或者平均值。该运算也分别叫做最大池化或平均池化。在二维最大池化中,池化窗口从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动。当池化窗口滑动到某一位置时,窗口中的输入子数组的最大值即输出数组中相应位置的元素。

图1展示了池化窗口形状为2×2的最大池化,阴影部分为第一个输出元素及其计算所使用的输入元素。输出数组的高和宽分别为2,其中的4个元素由取最大值运算max得出:

image.png

二维平均池化的工作原理与二维最大池化类似,但将最大运算符替换成平均运算符。池化窗口形状为p×q的池化层称为p×q池化层,其中的池化运算叫作p×q池化。

让我们再次回到本节开始提到的物体边缘检测的例子。现在我们将卷积层的输出作为2×2最大池化的输入。设该卷积层输入是X、池化层输出为Y。无论是X[i, j]X[i, j+1]值不同,还是X[i, j+1]X[i, j+2]不同,池化层输出均有Y[i, j]=1。也就是说,使用2×2最大池化层时,只要卷积层识别的模式在高和宽上移动不超过一个元素,我们依然可以将它检测出来。

定义一个池化层向前计算的函数pool2d

import torch
from torch import nn
def pool2d(X, pool_size, mode='max'):
    # 默认使用最大池化,平均池化将Mode设置为avg
    X = X.float()
    p_h, p_w = pool_size
    Y = torch.zeros(X.shape[0] - p_h + 1, X.shape[1] - p_w + 1)
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()       
    return Y

我们可以构造图1中的输入数组X来验证二维最大池化层的输出。

X = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
pool2d(X, (2, 2))

输出:

tensor([[4., 5.],
        [7., 8.]])

同时我们实验一下平均池化层。

pool2d(X, (2, 2), 'avg')

输出:

tensor([[2., 3.],
        [5., 6.]])

2. 池化层的填充和步幅

同卷积层一样,池化层也可以在输入的高和宽两侧的填充并调整窗口的移动步幅来改变输出形状。池化层填充和步幅与卷积层填充和步幅的工作机制一样。我们将通过nn模块里的二维最大池化层MaxPool2d来演示池化层填充和步幅的工作机制。我们先构造一个形状为(1, 1, 4, 4)的输入数据,前两个维度分别是批量和通道。

X = torch.arange(16, dtype=torch.float).view((1, 1, 4, 4))
X

输出:

tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]]]])

默认情况下,MaxPool2d实例里步幅和池化窗口形状相同。下面使用形状为(3, 3)的池化窗口,默认获得形状为(3, 3)的步幅。

pool2d = nn.MaxPool2d(3)
pool2d(X) 

输出:

tensor([[[[10.]]]])

我们可以手动指定步幅和填充。

pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)

输出:

tensor([[[[ 5.,  7.],
          [13., 15.]]]])

指定非正方形的池化窗口,并分别指定高和宽上的填充和步幅

pool2d = nn.MaxPool2d((2, 4), padding=(1, 2), stride=(2, 3))
pool2d(X)

输出:

tensor([[[[ 1.,  3.],
          [ 9., 11.],
          [13., 15.]]]])

3. 对多通道进行池化

在处理多通道输入数据时,池化层对每个输入通道分别池化,而不是像卷积层那样将各通道的输入按通道相加。这意味着池化层的输出通道数与输入通道数相等。下面将数组XX+1在通道维上连结来构造通道数为2的输入。

X = torch.cat((X, X + 1), dim=1)
X

输出:

tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]],
         [[ 1.,  2.,  3.,  4.],
          [ 5.,  6.,  7.,  8.],
          [ 9., 10., 11., 12.],
          [13., 14., 15., 16.]]]])

池化后,我们发现输出通道数仍然是2。

pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)

输出:

tensor([[[[ 5.,  7.],
          [13., 15.]],
         [[ 6.,  8.],
          [14., 16.]]]])

4. 总结

  • 最大池化和平均池化分别取池化窗口中输入元素的最大值和平均值作为输出。
  • 池化层的一个主要作用是缓解卷积层对位置的过度敏感性
  • 可以指定池化层的填充和步幅。
  • 池化层的输出通道数跟输入通道数相同

相关文章
|
8天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
13天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
11天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
41 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
24天前
|
编解码 安全 Linux
网络空间安全之一个WH的超前沿全栈技术深入学习之路(10-2):保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali——Liinux-Debian:就怕你学成黑客啦!)作者——LJS
保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali以及常见的报错及对应解决方案、常用Kali功能简便化以及详解如何具体实现
|
24天前
|
安全 网络协议 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-1):主动信息收集之ping、Nmap 就怕你学成黑客啦!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-1):主动信息收集之ping、Nmap 就怕你学成黑客啦!
|
24天前
|
网络协议 安全 NoSQL
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-2):scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练、就怕你学成黑客啦!
scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-2):scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练、就怕你学成黑客啦!
|
14天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
30 0
|
16天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习的奇迹:如何用神经网络识别图像
【10月更文挑战第33天】在这篇文章中,我们将探索深度学习的奇妙世界,特别是卷积神经网络(CNN)在图像识别中的应用。我们将通过一个简单的代码示例,展示如何使用Python和Keras库构建一个能够识别手写数字的神经网络。这不仅是对深度学习概念的直观介绍,也是对技术实践的一次尝试。让我们一起踏上这段探索之旅,看看数据、模型和代码是如何交织在一起,创造出令人惊叹的结果。
26 0
|
17天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
下一篇
无影云桌面