Java多线程基础-16:简述Java并发编程JUC中的Callable接口

简介: Callable接口是Java中用于描述带有返回值任务的接口,与Runnable相对,后者无返回值。Callable的call()方法用于执行具体任务并返回结果。

一、什么是Callable接口?


Callable 和 Runnable 相对,都是描述一个 “任务”。Callable 描述的是带有返回值的任务,而Runnable 描述的是不带返回值的任务。


可以把Runnable想象成一个没有参数和返回值的异步方法,而Callable与Runnable类似,但是是有返回值的,方便程序员借助多线程的方式计算结果。


Callable 接口是一个函数式接口,只有一个方法 call():



类型参数V就是call方法返回值的类型。例如,Callable<Integer>就表示一个最终返回Integer对象的异步计算:


        Callable<Integer> callable = new Callable<Integer>() {
            @Override
            public Integer call() throws Exception {
                ...
            }
        };


我们来看一下Callable的简单使用。


二、Callable接口的简单使用


代码示例:创建一个线程,计算 1 + 2 + 3 + ... + 1000,使用 Callable 实现。


首先,创建一个匿名内部类,并实现 Callable 接口。Callable 是带有泛型参数的,泛型参数就表示返回值的类型。这里的泛型参数用Integer。然后重写 Callable 的 call 方法,完成累加的过程,直接通过返回值返回计算结果。


        Callable<Integer> callable = new Callable<Integer>() {
            @Override
            public Integer call() throws Exception {
                int sum = 0;
                for (int i = 1; i <= 1000; i++) {
                    sum += i;
                }
                return sum;
            }
        };


当然,由于Callable是一个函数式接口,也可以用lambda表达式的方式来定义:


1.       Callable<Integer> callable = () -> {
            int sum = 0;
            for (int i = 1; i <= 1000; i++) {
                sum += i;
            }
            return sum;
        };


创建好callable任务后,需要一个线程来启动。


注意,这里并不是在构造Thread时直接将callable传入,而是要先通过FutureTask包装一下,再将FutureTask传入Thread的构造方法。


Future


Future接口代表一个异步计算的结果,可以在后台线程中进行计算,而不会阻塞当前线程。其中的 get() 方法可以获取这个结果,而且它的调用会阻塞,直到计算完成(类似于 join() )。如果运行该计算的线程被中断,get() 方法将抛出InterruptedException。如果计算已经完成,那么get 方法立即返回。


FutureTask


执行Callable的一种方法是使用FutureTask,它实现了Future和Runnable接口,所以可以构造一个线程来运行这个任务。


创建线程 t,在线程 t 的构造方法中传入 FutureTask。此时 t 就会执行 FutureTask 内部的 Callable 的 call 方法,完成计算。最终计算结果会存到 futureTask 中。


         FutureTask<Integer> futureTask = new FutureTask<>(callable);
        Thread t = new Thread(futureTask);


如何理解FutureTask?


可以把它理解成吃麻辣烫用到的“小票”。想象去吃麻辣烫,当餐点好后后厨就开始做了,同时前台会给你一张 “小票” 。这个小票就是FutureTask。 它意味着后面我们可以随时凭这张小票去查看自己的这份麻辣烫做出来了没。



最后,在主线程中调用 futureTask.get() ,获取到 FutureTask 中的结果。如何保证主线程中调用 get() 的时候,t 线程已经执行完了呢?由于FutureTask实现了Future接口,因此它的get()方法重写于Future中的get()方法,可以阻塞等待 t 线程的任务完成后,再获取结果。


完整代码


import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;
 
public class Test {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        Callable<Integer> callable = () -> {
            int sum = 0;
            for (int i = 1; i <= 1000; i++) {
                sum += i;
            }
            return sum;
        };
 
        FutureTask<Integer> futureTask = new FutureTask<>(callable);
        Thread t = new Thread(futureTask);
        t.start();
 
        System.out.println(futureTask.get());
    }
}


三、总结:Callable


1、理解Callable


Callable 和 Runnable 相对,都是描述一个 “任务”。 Callable 描述的是带有返回值的任务,而Runnable 描述的是不带返回值的任务。Callable 通常需要搭配 FutureTask 来使用,FutureTask 用来保存 Callable 的返回结果。因为 Callable 往往是在另一个线程中执行的。执行完成的时间并不确定,FutureTask 就可以负责这个等待结果出来的工作。


2、创建线程的方式汇总


在🔗Thread类及其用法 一文中,曾介绍过几种常见的线程创建的方式。这里将Callable也补充进去:


(1)继承Thread类


通过继承Thread类并重写run()方法来创建一个新线程。


class MyThread extends Thread {
    public void run() {
        // 线程执行的代码逻辑
        System.out.println("Thread running!");
    }
}
 
public class ThreadExample {
    public static void main(String[] args) {
        MyThread thread = new MyThread();
        thread.start(); // 启动线程
    }
}


(2)实现Runnable接口(匿名内部类同理)


实现Runnable接口并重写run()方法,然后通过将实现了Runnable接口的对象传递给Thread类的构造方法来创建线程。


class MyRunnable implements Runnable {
    public void run() {
        // 线程执行的代码逻辑
        System.out.println("Thread running!");
    }
}
 
public class RunnableExample {
    public static void main(String[] args) {
        MyRunnable myRunnable = new MyRunnable();
        Thread thread = new Thread(myRunnable);
        thread.start(); // 启动线程
    }
}


(2)实现Runnable接口(匿名内部类同理)


实现Runnable接口并重写run()方法,然后通过将实现了Runnable接口的对象传递给Thread类的构造方法来创建线程。

class MyRunnable implements Runnable {
    public void run() {
        // 线程执行的代码逻辑
        System.out.println("Thread running!");
    }
}
 
public class RunnableExample {
    public static void main(String[] args) {
        MyRunnable myRunnable = new MyRunnable();
        Thread thread = new Thread(myRunnable);
        thread.start(); // 启动线程
    }
}


匿名内部类:


public class Test {
    public static void main(String[] args) {
        // 匿名内部类 Runnable
        // 注意:Runnable实例作为Thread构造器的参数传入
        Thread t = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("i am t!");
            }
        });
 
        t.start();
 
        // main 线程中的方法
        System.out.println("i am main!");
    }
}


(3)使用lambda表达式(最常用)


public class Test {
    public static void main(String[] args) {
        // lambda表达式
        Thread t  = new Thread(() -> {
            System.out.println("i am t!");
        });
 
        t.start();
 
        // main 线程中的方法
        System.out.println("i am main!");
    }
}


(4)实现Callable


public class Test {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        Callable<Integer> callable = () -> {
            int sum = 0;
            for (int i = 1; i <= 1000; i++) {
                sum += i;
            }
            return sum;
        };
 
        FutureTask<Integer> futureTask = new FutureTask<>(callable);
        Thread t = new Thread(futureTask);
        t.start();
 
        System.out.println(futureTask.get());
    }
}
目录
打赏
0
0
0
0
31
分享
相关文章
Java网络编程,多线程,IO流综合小项目一一ChatBoxes
**项目介绍**:本项目实现了一个基于TCP协议的C/S架构控制台聊天室,支持局域网内多客户端同时聊天。用户需注册并登录,用户名唯一,密码格式为字母开头加纯数字。登录后可实时聊天,服务端负责验证用户信息并转发消息。 **项目亮点**: - **C/S架构**:客户端与服务端通过TCP连接通信。 - **多线程**:采用多线程处理多个客户端的并发请求,确保实时交互。 - **IO流**:使用BufferedReader和BufferedWriter进行数据传输,确保高效稳定的通信。 - **线程安全**:通过同步代码块和锁机制保证共享数据的安全性。
83 23
|
2月前
|
Linux编程: 在业务线程中注册和处理Linux信号
本文详细介绍了如何在Linux中通过在业务线程中注册和处理信号。我们讨论了信号的基本概念,并通过完整的代码示例展示了在业务线程中注册和处理信号的方法。通过正确地使用信号处理机制,可以提高程序的健壮性和响应能力。希望本文能帮助您更好地理解和应用Linux信号处理,提高开发效率和代码质量。
62 17
|
2月前
|
Linux编程: 在业务线程中注册和处理Linux信号
通过本文,您可以了解如何在业务线程中注册和处理Linux信号。正确处理信号可以提高程序的健壮性和稳定性。希望这些内容能帮助您更好地理解和应用Linux信号处理机制。
65 26
【JAVA】封装多线程原理
Java 中的多线程封装旨在简化使用、提高安全性和增强可维护性。通过抽象和隐藏底层细节,提供简洁接口。常见封装方式包括基于 Runnable 和 Callable 接口的任务封装,以及线程池的封装。Runnable 适用于无返回值任务,Callable 支持有返回值任务。线程池(如 ExecutorService)则用于管理和复用线程,减少性能开销。示例代码展示了如何实现这些封装,使多线程编程更加高效和安全。
Java 多线程 面试题
Java 多线程 相关基础面试题
|
10月前
|
关于《Java并发编程之线程池十八问》的补充内容
【6月更文挑战第6天】关于《Java并发编程之线程池十八问》的补充内容
77 5
Java中的并发编程:理解并应用线程池
在Java的并发编程中,线程池是提高应用程序性能的关键工具。本文将深入探讨如何有效利用线程池来管理资源、提升效率和简化代码结构。我们将从基础概念出发,逐步介绍线程池的配置、使用场景以及最佳实践,帮助开发者更好地掌握并发编程的核心技巧。
Java中的并发编程:深入理解线程池
在Java的并发编程中,线程池是管理资源和任务执行的核心。本文将揭示线程池的内部机制,探讨如何高效利用这一工具来优化程序的性能与响应速度。通过具体案例分析,我们将学习如何根据不同的应用场景选择合适的线程池类型及其参数配置,以及如何避免常见的并发陷阱。
86 1
Java并发编程:深入理解线程池
在Java并发编程领域,线程池是提升应用性能和资源管理效率的关键工具。本文将深入探讨线程池的工作原理、核心参数配置以及使用场景,通过具体案例展示如何有效利用线程池优化多线程应用的性能。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等