安防大数据赋予了智慧停车哪些应用价值

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

在大数据时代下,互联网行业都在提倡数据,国内的三大巨头都不谋而合拥有的海量的、最有价值的数据。百度拥有搜索数据,阿里拥有交易及信用数据,腾讯拥有社交数据,大数据的价值不言而喻。在安防领域中,也有很多沉睡的大数据,比如视频录像、卡口的过车数据等,其中有着很大的挖掘价值,那么安防大数据赋予了智慧停车哪些应用价值?

一、大数据应用和智慧停车存在的难题

大数据本身是针对数据的存储、检索、关联、推导等有价值的挖掘,这些数据本身来说是通用的。但在安防领域,哪些数据是有用的,哪些是我们需要关心和提取的,这是目前在摸索的问题。也就是说,当前的困难在于如何让技术热点和相关业务进行结合,以提取更有价值的数据。

而智慧停车也是对现有的用车人群对互联网的认识不是很高,一个围绕着停车场停车、移动支付、软件服务及广告服务的产业链在人们心中还没有一个确切的位置,伴随着停车难问题的日益凸显,智慧停车场的概念和解决方案正逐渐为商业停车场运营方所理解和推崇,渐渐的会慢慢在全国蔓延开来。

二、智慧停车提高人们的生活质量

现如今,很多车主的痛点找不到车位、停车场管理差、付钱排队费油费钱等,解决这些问题,也就是智慧停车所需要进行的方向,智慧停车平台服务的另一个重要的对象是停车资源的管理者,可以是资源的拥有者,也可以是运营公司或者管理公司。停车资源的拥有者,首要的目标是提升车位资源的使用水平,在满足车主需求的前提下,尽可能的提高周转率,从而实现客流的增加。

专业的停车运营公司,首要的目标是提高自身的管理水平,通过对人员和车场资产的精细化管理,一方面节约成本,一方面为业主和车主提供高品质的服务。伴随着物业服务水平的提高,为更好的服务车主,停车场业主对停车场信息化的需求进一步加深,以与客户业务相结合的智能出入口管控与收费、诱导及反向寻车为代表的全方位智慧停车场系统成为停车场的新高标准。

三、借助互联网+可以更好的为停车行业带来商业价值

停车行业可以从几个方面来考虑,比如政府、企业和大众。面向大众可以从停车引导、提前交费、车位分享、代客泊车、合租车位等角度;面向政府,可以从停车态势分析、规划决策支持以及诱导系统建设方面切入;面向企业,可以从停车场管理公司的精细化管理,如ERP、现场调度、人力资源调配以及节能减排等领域挖掘机会。

四、大数据在安防行业的发展趋势

大数据、云计算已经成为一种不可逆转的趋势。在智慧安防领域,大数据、云计算能创造出更多的产业价值,基于大数据的交换分享,业务厂家通过整合资源构建符合自身业务的应用系统。在智慧停车的视频监控领域,涉及图像识别、人脸识别、指纹识别、车牌识别、运动检测、视频摘要、视频浓缩等视频分析技术都是有着很大发展前景。

多种业务数据的综合分析,其本身是一个专家系统,要求对于各种业务熟悉,结合人工智能、深度学习等技术手段完成分析。而在安防停车行业国内很多产业都已经慢慢落实,腾讯的微信号+微信支付,百度的百度地图+百度钱包,阿里的支付宝(蚂蚁金服)+高德地图+立方控股都已经渐渐向智慧停车发出了信号,随着云技术的发展,未来智慧停车在大数据和智慧安防的推动下可大有所为。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
185 1
|
29天前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
2月前
|
机器学习/深度学习 存储 大数据
云计算与大数据技术的融合应用
云计算与大数据技术的融合应用
|
3月前
|
存储 分布式计算 druid
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
79 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
ly~
|
3月前
|
供应链 搜索推荐 安全
大数据模型的应用
大数据模型在多个领域均有广泛应用。在金融领域,它可用于风险评估与预测、智能营销及反欺诈检测,助力金融机构做出更加精准的决策;在医疗领域,大数据模型能够协助疾病诊断与预测、优化医疗资源管理和加速药物研发;在交通领域,该技术有助于交通流量预测、智能交通管理和物流管理,从而提升整体交通效率;电商领域则借助大数据模型实现商品推荐、库存管理和价格优化,增强用户体验与企业效益;此外,在能源和制造业中,大数据模型的应用范围涵盖从需求预测到设备故障预测等多个方面,全面推动了行业的智能化转型与升级。
ly~
242 2
ly~
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
大数据在智慧金融中的应用
在智能算法交易中,深度学习揭示价格波动的复杂动力学,强化学习依据市场反馈优化策略,助力投资者获取阿尔法收益。智能监管合规利用自然语言处理精准解读法规,实时追踪监管变化,确保机构紧跟政策。大数据分析监控交易,预警潜在违规行为,变被动防御为主动预防。数智化营销通过多维度数据分析,构建细致客户画像,提供个性化产品推荐。智慧客服借助 AI 技术提升服务质量,增强客户满意度。
ly~
167 3
ly~
|
3月前
|
供应链 搜索推荐 大数据
大数据在零售业中的应用
在零售业中,大数据通过分析顾客的购买记录、在线浏览习惯等数据,帮助零售商理解顾客行为并提供个性化服务。例如,分析网站点击路径以了解顾客兴趣,并利用历史购买数据开发智能推荐系统,提升销售和顾客满意度。此外,大数据还能优化库存管理,通过分析销售数据和市场需求,更准确地预测需求,减少库存积压和缺货现象,提高资金流动性。
ly~
547 2
|
3月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
2月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
426 7
|
2月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
58 2