时间序列分析实战(十一):ECM误差修正模型

简介: 时间序列分析实战(十一):ECM误差修正模型

1 目的

  为研究国民生产总值与货币供应量及利率的关系。现收集到1954年1月至1987年10月M1货币量对数序列log(M1),美国月度国民生产总值对数序列log(GNP),以及短期利率和长期利率序列,该篇文章主要演示:以GNP为响应序列,短期利率和长期利率序列为自变量,构建ECM误差修正模型。其数据处理方式、单整性检验及单序列的ARIMA模型构建见 时间序列分析实战(七):多个变量的ARIMA模型拟合。格兰因果检验见 时间序列分析实战(八):时序的格兰杰因果检验。协整关系检验见 时间序列分析实战(九):时序的协整关系检验 。动态协整回归模型见 时间序列分析实战(十):ARIMAX时序的协整动态模型 部分数据情况见表1所示。

表1 部分数据展示

2 ECM误差修正模型

  动态协整回归模型见 时间序列分析实战(十):ARIMAX时序的协整动态模型

  运行程序:

ecm(data1$log.GNP.,cbind(data1$短期利率,data1$长期利率))

  运行结果:

## 
## Call:
## lm(formula = dy ~ dX + ECM - 1)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -0.0197291 -0.0002637  0.0069164  0.0127968  0.0305471 
## 
## Coefficients:
##       Estimate Std. Error t value Pr(>|t|)   
## dX1  0.3083777  0.1603390   1.923  0.05661 . 
## dX2  0.2201537  0.3249898   0.677  0.49934   
## ECM -0.0011579  0.0003589   3.226  0.00159 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.01179 on 131 degrees of freedom
## Multiple R-squared:  0.159,  Adjusted R-squared:  0.1398 
## F-statistic: 8.258 on 3 and 131 DF,  p-value: 4.496e-05

  根据系统输出结果,该ECM模型为:

∇ln(GNPt)=0.3084∇SFt+0.2202∇LFt−0.0012ECMt−1ϵt

  方程结果,显示,方程显著线性相关,表明当期短期利率波动对当期log(GNP)波动影响较大,但上期误差log(GNP)的当期波动具有负反馈机制,单位调整比例为0.0012。

相关文章
|
1月前
|
机器学习/深度学习 算法 Python
深度解析机器学习中过拟合与欠拟合现象:理解模型偏差背后的原因及其解决方案,附带Python示例代码助你轻松掌握平衡技巧
【10月更文挑战第10天】机器学习模型旨在从数据中学习规律并预测新数据。训练过程中常遇过拟合和欠拟合问题。过拟合指模型在训练集上表现优异但泛化能力差,欠拟合则指模型未能充分学习数据规律,两者均影响模型效果。解决方法包括正则化、增加训练数据和特征选择等。示例代码展示了如何使用Python和Scikit-learn进行线性回归建模,并观察不同情况下的表现。
266 3
|
6月前
|
机器学习/深度学习 算法
LSTM时间序列预测中的一个常见错误以及如何修正
在使用LSTM进行时间序列预测时,常见错误是混淆回归和预测问题。LSTM需将时间序列转化为回归问题,通常使用窗口或多步方法。然而,窗口方法中,模型在预测未来值时依赖已知的未来值,导致误差累积。为解决此问题,应采用迭代预测和替换输入值的方法,或者在多步骤方法中选择合适的样本数量和训练大小以保持时间结构。编码器/解码器模型能更好地处理时间数据。
304 1
|
6月前
|
存储 数据采集 数据可视化
R语言估计时变VAR模型时间序列的实证研究分析案例
R语言估计时变VAR模型时间序列的实证研究分析案例
R语言估计时变VAR模型时间序列的实证研究分析案例
|
6月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进】MPDIoU:有效和准确的边界框损失回归函数 (论文笔记+引入代码)
YOLO目标检测专栏介绍了YOLO的有效改进和实战案例,包括卷积、主干网络、注意力机制和检测头的创新。提出了一种新的边界框回归损失函数MPDIoU,它基于最小点距离,能更好地处理不同宽高比的预测框,包含重叠、中心点距离和尺寸偏差的全面考虑。MPDIoU损失函数在YOLACT和YOLOv7等模型上的实验显示了优于现有损失函数的性能。此外,还介绍了WIoU_Scale类用于计算加权IoU,以及bbox_iou函数实现不同IoU变体的计算。详细实现和配置可在相应链接中查阅。
|
6月前
|
存储 资源调度 数据可视化
R语言STAN贝叶斯线性回归模型分析气候变化影响北半球海冰范围和可视化检查模型收敛性
R语言STAN贝叶斯线性回归模型分析气候变化影响北半球海冰范围和可视化检查模型收敛性
|
6月前
|
数据可视化 Python
PYTHON贝叶斯推断计算:用BETA先验分布推断概率和可视化案例
PYTHON贝叶斯推断计算:用BETA先验分布推断概率和可视化案例
|
6月前
|
编译器 Python Windows
R语言RStan贝叶斯示例:重复试验模型和种群竞争模型Lotka Volterra
R语言RStan贝叶斯示例:重复试验模型和种群竞争模型Lotka Volterra
|
6月前
|
编译器 Python Windows
R语言RStan贝叶斯示例:重复试验模型和种群竞争模型Lotka Volterra1
R语言RStan贝叶斯示例:重复试验模型和种群竞争模型Lotka Volterra
|
6月前
R语言RStan贝叶斯示例:重复试验模型和种群竞争模型Lotka Volterra2
R语言RStan贝叶斯示例:重复试验模型和种群竞争模型Lotka Volterra
|
6月前
|
数据可视化
R语言中使用非凸惩罚函数回归(SCAD、MCP)分析前列腺数据
R语言中使用非凸惩罚函数回归(SCAD、MCP)分析前列腺数据