R语言中使用非凸惩罚函数回归(SCAD、MCP)分析前列腺数据

简介: R语言中使用非凸惩罚函数回归(SCAD、MCP)分析前列腺数据

本文使用lasso或非凸惩罚拟合线性回归,GLM和Cox回归模型的正则化,特别是_最小_最_大凹_度_惩罚_函数_(MCP)_和光滑切片绝对偏差惩罚(SCAD),以及其他L2惩罚的选项( “弹性网络”)。还提供了用于执行交叉验证以及拟合后可视化,摘要,推断和预测的实用程序。

我们研究 前列腺数据,它具有8个变量和一个连续因变量,即将进行根治性前列腺切除术的男性的PSA水平(按对数尺度):

X <- data$X
y <- data$y

要将惩罚回归模型拟合到此数据,执行以下操作:

reg(X, y)


此处的默认惩罚是_最小_最_大凹_度_惩罚_函数_(MCP)_,但也可以使用SCAD和lasso惩罚。这将产生一个系数路径,我们可以绘制

plot(fit)


注意,变量一次输入一个模型,并且在λ的任何给定值下,几个系数均为零。要查看系数是多少,我们可以使用以下 coef 函数:

coef(fit, lambda=0.05)
# (Intercept)      lcavol     lweight         age        lbph         svi 
#  0.35121089  0.53178994  0.60389694 -0.01530917  0.08874563  0.67256096 
#         lcp     gleason       pgg45 
#  0.00000000  0.00000000  0.00168038


summary 方法可用于后_选择推断_:

summary(fit 
# MCP-penalized linear regression with n=97, p=8
# At lambda=0.0500:
# -------------------------------------------------
#   Nonzero coefficients         :   6
#   Expected nonzero coefficients:   2.54
#   Average mfdr (6 features)    :   0.424
# 
#         Estimate      z     mfdr Selected
# lcavol   0.53179  8.880  < 1e-04        *
# svi      0.67256  3.945 0.010189        *
# lweight  0.60390  3.666 0.027894        *
# lbph     0.08875  1.928 0.773014        *
# age     -0.01531 -1.788 0.815269        *
# pgg45    0.00168  1.160 0.917570        *


在这种情况下, 即使调整了模型中的其他变量之后,lcavolsvi以及 lweight 显然与因变量关联,同时 lbphagepgg45 可能只是_偶然_包括。通常,为了评估模型在λ的各种值下的预测准确性,将执行交叉验证:

plot(cvfit)


使交叉验证误差最小的λ的值由 cvfit$lambda.min给出,在这种情况下为0.017。将coef 在return的输出 应用于 cv.ncvreg λ的值的系数:

coef 
#  (Intercept)       lcavol      lweight          age         lbph          svi 
#  0.494154801  0.569546027  0.614419811 -0.020913467  0.097352536  0.752397339 
#          lcp      gleason        pgg45 
# -0.104959403  0.000000000  0.005324465


可以通过predict来获得预测值 ,该选项有多种选择:

predict(cvfit
# 预测新观测结果的响应
#         1         2         3         4         5         6 
# 0.8304040 0.7650906 0.4262072 0.6230117 1.7449492 0.8449595
 
# 非零系数的数量
# 0.01695 
#       7
 
# 非零系数的特性
#  lcavol lweight     age    lbph     svi     lcp   pgg45 
#       1       2       3       4       5       6       8


请注意,原始拟合(至完整数据集)的结果为 cvfit$fit;不必同时调用两者 ncvregcv.ncvreg 分析数据集。

如, plot(cvfit$fit) 将产生与上述相同的系数路径图 plot(fit)


相关文章
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
50 3
|
3月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
4月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
7月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
4月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
4月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
81 3