【数据结构】二叉树的三种遍历(非递归讲解)

简介: 【数据结构】二叉树的三种遍历(非递归讲解)

1、前言

学习二叉树的三种非递归遍历前,首先来了解一下递归序:


递归序就是按照先序遍历的顺序,遇到的所有结点按顺序排列,重复的结点也必须记录。



我们可以发现递归序中每个结点都会遇到三次。


这是因为当进入某一结点时,对该结点进行第一次操作,然后调用其左孩子结点,等左孩子结点结束调用时会返回自己,此时就可以对自己进行第二次操作,然后再调用其右孩子结点,等左孩子结点结束调用时又会返回自己,此时就可以对自己进行第三次操作,因为不管怎样,调用完孩子结点后终究会返回到父结点。


直接给出结论:


递归序中第一次遇到该节点时打印结点,第二次第三次均不做任何操作,这就是先序遍历。


递归序中第二次遇到该节点时打印结点,第一次第三次均不做任何操作,这就是中序遍历。


递归序中第三次遇到该节点时打印结点,第一次第二次均不做任何操作,这就是后序遍历。






2、二叉树的非递归遍历

任何递归函数都可以改成非递归函数,因为递归函数不是什么玄学,只是递归时系统帮忙解决了压栈问题。那么不用递归方式的话只要自己手动进行压栈依然可以完成递归能够实现的功能。


有了上面递归序的知识点作为铺垫,就可以很好的理解非递归的实现了。


2.1、先序遍历

递归序中第一次遇到该节点时打印结点,第二次第三次均不做任何操作,这就是先序遍历。


首先使用cur依次将二叉树所有左边界节点入栈,并且打印节点。当此时cur走到叶子节点后,将栈顶元素出栈,并让cur指向出栈元素的右孩子,继续进行左边界节点入栈操作。


 

public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> list = new LinkedList<>();
        if(root == null) {
            return list;
        }
        Stack<TreeNode> stack = new Stack<>();
        TreeNode cur = root;
        while(cur != null || !stack.isEmpty()) {
            if(cur != null) {
                stack.push(cur);
                System.out.print(cur.val + " ");  //第一次遇到时进行打印
                cur = cur.left;
            } else {
                cur =  stack.pop();   //第二次遇到
                cur = cur.right;
            }
        }
        return list;
    }

2.2、中序遍历

递归序中第二次遇到该节点时打印结点,第一次第三次均不做任何操作,这就是中序遍历。


首先使用cur依次将二叉树所有左边界节点入栈。当此时cur走到叶子节点后,将栈顶元素出栈后并打印,此时第二次遇到该元素。然后让cur指向出栈元素的右孩子,继续进行左边界节点入栈操作。


 

public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> list = new LinkedList<>();
        if(root == null) {
            return list;
        }
        Stack<TreeNode> stack = new Stack<>();
        TreeNode cur = root;
        while(cur != null || !stack.isEmpty()) {
            if(cur != null) {
                stack.push(cur);   //第一次遇到
                cur = cur.left;
            } else {
                cur =  stack.pop();
                System.out.print(cur.val + " ");   //第二次遇到时进行打印
                cur = cur.right;
            }
        }
        return list;
    }


2.3、后序遍历

递归序中第三次遇到该节点时打印结点,第一次第二次均不做任何操作,这就是后序遍历。


首先使用cur依次将二叉树所有左边界节点入栈。当此时cur走到叶子节点后,使用peek()查找出栈顶元素top(并非出栈)后并打印,然后判断top节点是否存在右孩子,当存在时则让cur指向top节点的右孩子,继续进行左边界节点入栈操作。当top不存在右孩子时则将栈顶元素出栈并打印栈顶元素,此时第三次遇到该元素。


 

public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> list = new LinkedList<>();
        if(root == null) {
            return list;
        }
        Stack<TreeNode> stack = new Stack<>();
        TreeNode cur = root;
        TreeNode prev = null;
        while(cur != null || !stack.isEmpty()) {
            if(cur != null) {
                stack.push(cur);   //第一次遇到
                cur = cur.left;
            } else {
                TreeNode top = stack.peek();   //第二次遇到
                if(top.right != null && prev != top.right) {   //当该节点右子树不为空,并且之前没有去过右子树时
                    cur = top.right;      
                } else {     //该节点右子树为空或者是已经去过一次右子树了
                    top = stack.pop();
                    System.out.print(cur.val + " ");   //第三次遇到时进行打印
                    prev = top;
                }
            }
        }
        return list;
    }
目录
相关文章
|
7月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
171 58
|
3月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
93 9
 算法系列之数据结构-二叉树
|
5月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
142 12
|
5月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
136 10
|
5月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
189 2
|
6月前
|
数据库
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
|
5月前
|
数据采集 存储 算法
【C++数据结构——图】图的遍历(头歌教学实验平台习题) 【合集】
本文介绍了图的遍历算法,包括深度优先遍历(DFS)和广度优先遍历(BFS)。深度优先遍历通过递归方式从起始节点深入探索图,适用于寻找路径、拓扑排序等场景;广度优先遍历则按层次逐层访问节点,适合无权图最短路径和网络爬虫等应用。文中提供了C++代码示例,演示了如何实现这两种遍历方法,并附有测试用例及结果,帮助读者理解和实践图的遍历算法。
234 0
|
7月前
|
机器学习/深度学习 存储 算法
数据结构实验之二叉树实验基础
本实验旨在掌握二叉树的基本特性和遍历算法,包括先序、中序、后序的递归与非递归遍历方法。通过编程实践,加深对二叉树结构的理解,学习如何计算二叉树的深度、叶子节点数等属性。实验内容涉及创建二叉树、实现各种遍历算法及求解特定节点数量。
220 4
|
7月前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
502 8
|
8月前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆