Criteo公司在上海新开通一个数据中心

简介:

日前,美国效果营销科技企业Criteo公司在上海开通了其数据中心。新数据中心的开通,将会提高Criteo公司对客户在线广告和公司业绩,进一步表明其对中国市场的承诺。

该数据中心提供服务广告客户大多数是中国的出版商。Criteo公司计划在今年第一季度增加更多的出版商客户。在过去的四年里,该公司拥有并运营15000多个服务器,以满足其不断扩大的全球业务的需求。

中国市场是其战略重点

Criteo公司首席执行官埃里克·艾希曼说:“中国市场一直是Criteo公司的战略重点。此次推出的上海数据中心是一个长期的战略,我们在这里承诺提高我们业务能力。而新开通的数据中心使我们能够具备更多的能力,可以更好地服务于我们在中国的广告商、出版商和用户。”

随着在中国市场的存在,新的数据中心能够Criteo公司提供预测和推荐引擎,在中国更加灵活,有弹性,高效的连接。该发动机是基于机器学习和预测技术,可以帮助客户在实时显示个性化的广告到达用户。

Criteo公司的预测和推荐引擎在中国范围内将实现更灵活、更有弹性且更加高效的连接。Criteo引擎基于自主学习式算法和预测引擎技术,可以帮助客户向那些未能转化的访客进行个性化实时的广告展示。

“这个高性能数据中心为Criteo公司加快在中国电子商务的快速增长奠定了坚实的基础,”Criteo公司中国区董事总经理郑家强说,“这将能进一步提升Criteo引擎针对中国市场的表现,使其更有效地提供有针对性的数字性能的广告,让广告更有效地吸引并转化客户。”

该数据中心的设计和建造根据高标准的冗余和安全。并与中国联通和中国电信、中国两大互联网服务供应商相连接。

Criteo公司数据中心通过专用国际专用网络连接在香港和荷兰的阿姆斯特丹的另外两个数据中心。

这是Criteo公司在亚洲开通的第三个数据中心,也是其在全球第7个数据中心。Criteo公司在亚太地区开通的其他两个数据中心,一个是2011年3月在东京,一个是2014年5月在香港分别开通的。

本文转自d1net(转载)

相关文章
|
2月前
|
存储 传感器 监控
探索现代数据中心的冷却技术革新
【4月更文挑战第23天】 在信息技术迅猛发展的今天,数据中心作为计算和存储的核心枢纽,其稳定性和效率至关重要。然而,随着处理能力的增强,设备发热量急剧上升,有效的冷却方案成为确保数据中心持续运行的关键因素。本文将深入分析当前数据中心面临的热管理挑战,并探讨几种前沿的冷却技术,包括液冷系统、热管技术和环境自适应控制策略。通过比较不同技术的优缺点,我们旨在为数据中心管理者提供实用的冷却解决方案参考。
|
2月前
|
存储 大数据 数据处理
探索现代数据中心的冷却技术
【5月更文挑战第25天】 在信息技术迅猛发展的今天,数据中心作为其核心基础设施之一,承载了巨大的数据处理需求。随着服务器密度的增加和计算能力的提升,数据中心的能耗问题尤其是冷却系统的能效问题日益凸显。本文将深入探讨现代数据中心所采用的高效冷却技术,包括液冷解决方案、热管技术和环境自适应控制等,旨在为数据中心的绿色节能提供参考和启示。
|
2月前
|
机器学习/深度学习 资源调度 监控
利用机器学习技术优化数据中心能效
【5月更文挑战第30天】在数据中心管理和运营中,能源效率的优化是降低运营成本和减少环境影响的关键。本文旨在探讨如何应用机器学习技术来提升数据中心的能源效率。通过对现有数据中心运行数据的深入分析,开发预测性维护模型,以及实施智能资源调度策略,我们可以显著提高数据中心的能效。本研究提出了一种集成机器学习算法的框架,该框架能够实时监控并调整数据中心的能源消耗,确保以最佳性能运行。
|
2月前
|
人工智能 监控 物联网
探索现代数据中心的冷却技术
【5月更文挑战第27天】 在信息技术迅猛发展的今天,数据中心作为信息处理的核心设施,其稳定性和效率至关重要。而随着计算能力的提升,数据中心面临的一个重大挑战便是散热问题。本文将深入探讨现代数据中心冷却技术的进展,包括传统的空气冷却系统、水冷系统,以及新兴的相变材料和热管技术。通过对不同冷却方式的效率、成本及实施难度的分析,旨在为读者提供一份关于数据中心散热优化的参考指南。
|
1月前
|
移动开发 监控 前端开发
基于 HTML5 WebGL 和 VR 技术的 3D 机房数据中心可视化
基于 HTML5 WebGL 和 VR 技术的 3D 机房数据中心可视化
|
2月前
|
存储 大数据 数据中心
提升数据中心能效的先进冷却技术
【5月更文挑战第27天】 在信息技术不断进步的今天,数据中心作为计算和存储的核心枢纽,其能源效率已成为评价其可持续性的关键指标。本文将探讨当前数据中心面临的热管理挑战,并展示一系列创新的冷却技术解决方案,旨在提高数据中心的能效,同时确保系统的稳定性和可靠性。通过对比传统冷却方法和新兴技术,我们将分析各种方案的优势、局限性以及实施难度,为数据中心运营者提供科学的决策参考。
|
2月前
|
存储 传感器 人工智能
探索现代数据中心的冷却技术革新
【5月更文挑战第18天】 在数字化时代,数据中心作为信息处理与存储的核心设施,其稳定性和效能至关重要。随着计算需求的激增,数据中心的冷却系统面临着前所未有的挑战。传统的空调冷却方法不仅耗能巨大,而且效率低下。本文将深入探讨现代数据中心冷却技术的最新进展,包括液冷技术、热管应用、环境辅助设计以及智能化管理等方面,旨在提供一种高效、可持续且经济的解决方案,以应对日益增长的冷却需求。
|
2月前
|
机器学习/深度学习 存储 监控
利用机器学习技术优化数据中心能效
【5月更文挑战第11天】 在云计算和大数据的背景下,数据中心作为信息处理的核心设施,其能效问题一直是研究的热点。传统的能效管理方法难以应对日益增长的能源消耗和复杂多变的工作负载。本文提出一种基于机器学习技术的数据中心能效优化方案,通过实时监控和智能调度策略,有效降低能耗并提升资源利用率。实验结果表明,该方案能够减少约15%的能源消耗,同时保持服务质量。
|
2月前
|
机器学习/深度学习 数据采集 资源调度
利用机器学习技术优化数据中心能效
【5月更文挑战第27天】 在本文中,我们探讨了一种基于机器学习的技术框架,旨在实现数据中心能效的优化。通过分析数据中心的能耗模式并应用预测算法,我们展示了如何动态调整资源分配以减少能源消耗。与传统的摘要不同,此部分详细阐述了研究的动机、使用的主要技术手段以及期望达成的目标,为读者提供了对文章深入理解的基础。