电信运营商如何抢占大数据先机?

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

如《大数据时代》作者迈尔舍恩伯格所说:“大数据正在改变我们的生活以及理解世界的方式,成为新发明和新服务的源泉,而更多的改变正在蓄势待发。”随着互联网时代的到来,以及数据存储能力的提升和分布式计算技术的发展,人们发现了海量数据的潜在价值,不断在大数据领域做出探索,试图从中挖掘金矿。而在媒体与投资的热烈追逐下,挖掘大数据价值的浪潮也不可避免的泥沙俱下,“炒概念”的现象成为常态,以至于人们现在谈到“大数据”一词,已经带有一丝负面的含义。

电信运营商作为用户接触互联网乃至于移动互联网的管道,在接触、存储、分析、应用数据方面,有着先天的优势与无法替代的地位。为避免被“管道化”,运营商自然也不会错过这个社会,纷纷在大数据应用上做出积极探索与尝试,甚至将其视为自身商业模式转型的重要资产与核心能力。

存量与流量两大运营方向

当前,电信运营商在大数据对内对外的一些主要应用场景上均有了一些新的探索。从存量运营经营的角度看,全面、及时的用户画像成为新的方向。存量用户所沉淀的丰富数据,也使得大数据在存量运营上有了用武之地。以宽带维系为例,依托于DPI(深度包检测)数据解析,运营商基于宽带用户的搜索浏览行为和偏好构建数据挖掘模型,可对用户进行更为全面的画像。借此,运营商有能力更迅速、更真实的还原用户对于带宽速率、增值服务、移动加装以及离网的需求,以便及时进行用户维系与挽留,延长用户的生命周期,提升价值。

随着4G时代来临,移动流量收入已成为新的业务增长点,各大运营商已将以往语音经营的精力和资源更多地投放到流量经营上。而大数据在流量经营上的发力点,主要在于找到流量提升的关键要素。此外,由于海量数据资产与自身有限产品间的不平衡,运营商纷纷着眼于自有数据在外行业的交易与变现,而合作的方向更是多点开花。某地运营商就提出以金融业信用查询、房地产行业精确营销、RTB(即时竞价)精准广告及政企客户行业咨询报告等四大方向作为2016年大数据变现的重点。

绕不开的难题

从定义上讲,大数据的首要特性就在于“大而全”。但受限于当前三家运营商瓜分用户的市场格局,哪家都无法获取全量用户的通信行为。这就对运营商推动数据外部合作产生了不小的阻力。比如面对银行业所需的客户征信需求,运营商只能提供使用自家业务的用户信用情况,无法完全满足合作方需求。

由于媒体和资本对大数据的热烈追捧,当前大数据这一概念承载了超过其自身实在的商业价值。无须讳言,运营商在大数据实践上也存在一定程度的形式主义。一些所谓的大数据专题,往往只追求概念和创新,忽视对投入产出的分析,以至于花费了大量人力和资源投入的大数据项目收效甚微。

此外,提到大数据,用户隐私与信息权益是个绕不开的话题。被称为“大数据时代预言家”的迈尔舍恩伯格所著的《删除》便探讨了这一困境,并对6种常见的解决应对方案进行一一分析,比如数据节制、加强隐私权保护的法律等,而又基于与大数据理念相悖等种种原因给予了反驳与否定。其在书中提出的引入信息时间期限及“遗忘”机制,当前也未具备足够的理念与技术基础。应该说,在大数据时代的信息隐私保护仍未有令人满意的方案。

运营商大数据应用的未来

办法总比困难多,无论是运营商也好,金融业或互联网的巨头也好,在信息社会中,哪一方玩家也无法掌握全局的信息。与其“抱残守缺”,不如积极融入到大数据行业的生态链当中。人们对大数据的认知,已逐步从概念的阶段转入工具的阶段,从飘在云端的概念落到一个个实际的应用和实践当中。在这种背景下,运营商应该转变思维,重新从战略与业务目标出发,对比考察大数据对不同业务的实际应用效果,有选择性地用好大数据这一工具,踏踏实实地做好每一个应用场景,从真正意义上使大数据为业务发展服务。

传统、个案式、业务驱动的电信营销模式,可能已经无法满足互联网时代的用户需求。只有数据驱动、用户导向、自动触发的营销服务体系,才能发挥“大数据挖掘用户需求”的作用;建立自动化、一体化的营销服务体系,通过提前预案,进行用户分群,并对不同用户群体匹配相应的产品、渠道、时机,符合预设条件便自动触发营销行为。如此,方能及时把握用户需求,促成订购行为。

据笔者观察,对比许多互联网企业“明目张胆”的采集、使用用户数据,用户往往对于运营商的相同行为更加敏感和反感。其中一个主要原因恐怕是互联网企业提供的往往是一种所谓“免费”的服务,而用户使用运营商服务,则是实实在在地付出了套餐费用,更难接受运营商使用自己的数据。这种理论是否合理暂不讨论,但这种想法却是确实存在的。既然如此,运营商可否转变观念,与用户订立自愿性质的信息使用协议?协议以一定的价格优惠换取对用户信息使用的许可,不同级别的使用许可能够换取不同程度的价格优惠。再通过这部分数据的变现补足在传统业务上的收入下降,逐步实现业务模式的转型。总之,与其在数据开发与用户隐私的矛盾之中裹足不前,不如主动放弃一部分利益,换取大数据时代的先机。





====================================分割线================================


本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2月前
|
Oracle 大数据 数据挖掘
企业内训|大数据产品运营实战培训-某电信运营商大数据产品研发中心
本课程是TsingtaoAI专为某电信运营商的大数据产品研发中心的产品支撑组设计,旨在深入探讨大数据在电信运营商领域的应用与运营策略。通过密集的培训,从数据的本质与价值出发,系统解析大数据工具和技术的最新进展,深入剖析行业内外的实践案例。课程涵盖如何理解和评估数据、如何有效运用大数据技术、以及如何在不同业务场景中实现数据的价值转化。
65 0
|
4月前
|
机器学习/深度学习 数据可视化 大数据
【钉钉杯大学生大数据挑战赛】初赛 A:银行卡电信诈骗危险预测 Baseline
本文介绍了参加"钉钉杯大学生大数据挑战赛"初赛A的银行卡电信诈骗危险预测项目的Baseline方案,包括问题分析、Python实现(含数据探索、模型训练调参、特征工程、模型评价和可视化)、以及代码下载链接。
84 0
|
搜索推荐 大数据 数据库
精准大数据获客——移动 联通 电信运营商大数据分析_营销
目前,移动、联通、电信三大运营商都在加速进行大数据能力建设、完善和丰富大数据的应用模式和基础架构。在大数据时代,企业的销售和营销渠道已由传统模式转为向大数据营销模式,大数据营销模式更顺应时代的变化和发展趋势。三大运营商,移动,联通,电信拥有全互联网规模最大的数据库,简称“运营商大数据”运营商大数据拥有海量的用户数据,其中包括众多领域,不同行业,和不同的消费群体,运营商大数据对不同行业,企业,公司的发展和营销获客起着非常重要的作用。
精准大数据获客——移动 联通 电信运营商大数据分析_营销
|
存储 机器学习/深度学习 分布式计算
大数据入门指南:掌握大数据,抢占未来(基础)
大数据入门指南:掌握大数据,抢占未来(基础)
75 0
|
机器学习/深度学习 数据采集 算法
大数据分析案例-对电信客户流失分析预警预测
大数据分析案例-对电信客户流失分析预警预测
1638 0
大数据分析案例-对电信客户流失分析预警预测
|
大数据 数据挖掘 数据建模
运营商大数据精准获客是怎么做到的?企业如何以低成本获取精准客户?
运营商拥有强大的云计算大数据中心,可以通过建立数据模型对任何网站,网页,网址,手机app,400电话,固话,关键词,短信号码等平台进行实时精准数据分析,通过用户综合行为,和用户偏好等综合用户信息等,对目标客户群体进行精准抓取和获取,同时还可以筛选如地区,性别,年龄,职业,访问次数,访问时长,通话次数,通话时长等维度,对目标客户群体更加精准定位。
运营商大数据精准获客是怎么做到的?企业如何以低成本获取精准客户?
|
存储 分布式计算 监控
运营商大数据精准截取点击网站、app、短信、座机通话等数据,高精准高意向。
【销售要求】:教育、房产、汽车、招商、婚庆、移民、留学、医疗等处于前期流量红利期,单个线索低于百度投放,转化率远高于竞价排名。短信营销、电话营销,需要合作企业有正规资质,金融业需要对应牌照,个人无法合作,仅限有营业执照的公司,运营商需备案!
运营商大数据精准截取点击网站、app、短信、座机通话等数据,高精准高意向。
|
搜索推荐 大数据 计算机视觉
口腔护理如何运用运营商大数据精准获客
近年来,人们的健康观念不断提高,对牙科门诊项目的需求也迅速提高。根据相关科研成果报告,现阶段,我国牙科门诊消费市场的业务规模已超过1000亿元。预计到2030年,所有销售市场的复合增长率将达到11.1%。另一方面,需要刺激的巨大销售市场吸引了大量资产。私人牙科门诊机构总数呈爆炸式增长,大大增加了市场需求的布局。同样,口腔组织的推广相当严重,同质化竞争激烈,广告成本昂贵且持续飙升,这已成为大中型口腔组织的一个困惑问题
口腔护理如何运用运营商大数据精准获客
|
存储 大数据
大数据开发项目-电信项目1-生产数据
通信运营商每时每刻会产生大量的通信数据,例如通话记录,短信记录,彩信记录,第三方服务资费等等繁多信息。数据量如此巨大,除了要满足用户的实时查询和展示之外,还需要定时定期的对已有数据进行离线的分析处理。例如,当日话单,月度话单,季度话单,年度话单,通话详情,通话记录等等+。我们以此为背景,寻找一个切入点
254 0
大数据开发项目-电信项目1-生产数据
|
消息中间件 数据采集 分布式计算
大数据开发项目-电信项目2-传输数据
1. 配置flume文件 2.数据采集部分打通 2.1启动zookeeper及集群 2.2启动kafka集群 2.3启动flume集群 2.4生产数据 3 数据消费环境准备 3.1添加maven配置 3.2添加maven配置 4 消费数据工具类 4.1 PropertiesUtil代码来调用配置的参数