原文链接:http://tecdat.cn/?p=21467
目的
房价有关的数据可能反映了中国近年来的变化:
- 人们得到更多的资源(薪水),期望有更好的房子
- 人口众多
- 独生子女政策:如何影响房子的几何结构?更多的卧室,更多的空间
我核心的想法是预测房价。然而,我不打算使用任何arima模型;相反,我将使用数据的特性逐年拟合回归。
结构如下:
- 数据准备:将数值特征转换为分类;缺失值
- EDA:对于数值特征和分类特征:平均价格与这些特征的表现
- 建模:
- 分割训练/测试给定年份的数据:例如,在2000年分割数据;根据这些数据训练回归模型
- 然后,在2016年之前的所有新年里,预测每套房子的价值。
- 用于验证的度量将是房屋的平均价格(即每年从测试样本中获得平均价格和预测值)
数据准备
我们对特征有了非常完整的描述:
url:获取数据(字符)的url
id:id(字符)
Lng:和Lat坐标,使用BD09协议。(数字)
Cid:社区id(数字)
交易时间:交易时间(字符)
DOM:市场活跃日。(数字)
关注者:交易后的人数。(数字)
总价:(数值)
价格:按平方计算的平均价格(数值)
面积:房屋的平方(数字)
起居室
数(字符)
客厅
数(字符)
厨房:厨房数量(数字)
浴室数量(字符)
房子高度
建筑类型:包括塔楼(1)、平房(2)、板塔组合(3)、板(4)(数值)
施工时间
装修:包括其他(1)、粗(2)、简单(3)、精装(4)(数值)
建筑结构:包括未清(1)、混合(2)、砖和木(3)、砖混凝土(4)、钢(5)和钢-混凝土复合材料(6)(数值)
梯梯比:同层居民数与电梯数量的比例。
电梯有(1)或没有电梯(0)(数值)
五年期:业主拥有不到5年的财产(数字)
数据清理、特征创建
从最初的数据看:
- 从网址上,我发现它有位置信息,如chengjiao/101084782030。同样,一个简单的regexp进行省特征提取。
- 另一个大的数据准备工作是转换一些数字特征,比如地铁,地铁站附近的房子编码为1,相反的情况编码为0。
- 还有很大一部分DOM缺失。我既不能在建模中使用这个特性,也不能删除NA,但它也会减小数据帧的大小。
#从网址中提取省份 sapply(df$url, function(x) strsplit(x,'/')[[1]][4])
检查缺失
#缺失数据图 ggplot(data = .,aes(x = V2, y = V1)) + geom_tile(aes(fill = value )) +
- 如上所述,DOM的很大一部分丢失了。我决定先保留这个特性,然后用中间值来填充缺失的值(分布是非常倾斜的)
- 否则,buildingType和communityAverage(pop.)中只有几个缺少的值,我决定简单地删除这些值。事实上,它们只占了约30行,而整个数据集的数据量为300k+,因此损失不会太大。
- 下面我简单地删除了我以后不打算使用的特征。
ifelse(is.na(df$DOM),median(df$DOM,na.rm=T),df$DOM)
用于将数字转换为类别的自定义函数
对于某些特征,需要一个函数来处理多个标签,对于其他一些特征(客厅、客厅和浴室),转换非常简单。
df2$livingRoom <- as.numeric(df2$livingRoom)
似乎buildingType具有错误的编码数字值:
buildingType | count |
0.048 | 4 |
0.125 | 3 |
0.250 | 2 |
0.333 | 5 |
0.375 | 1 |
0.429 | 1 |
0.500 | 15 |
0.667 | 1 |
1.000 | 84541 |
2.000 | 137 |
3.000 | 59715 |
4.000 | 172405 |
NaN | 2021 |
由于错误的编码值和NA的数量很少,因此我将再次丢弃这些行
df2$renovationCondition <- sapply(df2$renovationCondition, ionCondition) df2$buildingStructure <- sapply(df2$buildingStructure, makeStructure) df2$elevator <- ifelse(df2$elevator==1,'has_elevator','no_elevator')
缺失值检察
# 缺失数据图 df2 %>% is.na %>% melt %>% ggplot(data = .,aes(x = Var2, y = Var1)) + geom_tile(aes(fill = value)) + scale_fill_manual(values = c("grey20","white")) + theme_minimal(14) +
kable(df %>% group_by(constructionTime) %>% summarise(count=n()) %>% arrange(-count) %>% head(5))
constructionTime | count |
2004 | 21145 |
2003 | 19409 |
NA | 19283 |
2005 | 18924 |
2006 | 14854 |
df3 <- data.frame(df2 %>% na.omit())
插补后的最终检查
any(is.na(df3))
## [1] FALSE
探索性分析
由于有数字和分类特征,我将使用的EDA技术有:
- 数值:相关矩阵
- 分类:箱线图和地图
我们必须关注价格(单位价格/单位价格)以及总价格(百万元)
totalPrice将是回归模型的目标变量。
数值特征
corrplot(cor( df3 , tl.col='black')
评论
- totalPrice与communityAverage有很强的正相关关系,即人口密集区的房价较高
- totalPrice与客厅、卫浴室数量有一定的正相关关系。
- 至于面积变量,我们看到它与上述变量也有很强的相关性:这是有道理的,因为如果房子的面积大,可以建造更多的房间(显而易见)。
- 其他一些有趣的相关性:communityAverage与建筑时间呈负相关,这意味着在人口密集区建房所需的时间更短
分类特征
地图
- 中国三级(省)地图
- 我看了看城郊,它位于北京附近,所以我过滤了那个特定省份的地图
ggplot() + geom_polygon(data = shapefile_test,aes(x = long, y = lat, group = group), BeijingLoc <- data.frame('Long'=116.4075,'Lat' = 39.904)
建筑结构
makeEDA('buildingStructure' )
砖木结构的房屋是最昂贵的,几乎是其他类型房屋的两倍
点击标题查阅往期内容
01
02
03
04
线性回归和时间序列分析北京房价影响因素可视化案例(下):https://developer.aliyun.com/article/1490585?spm=a2c6h.13148508.setting.28.658d4f0eueN6WO