R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率

简介: R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率

原文链接:http://tecdat.cn/?p=25957 


介绍


当您处理金融时间序列时,我们通常可以获得相对高频的观察结果。例如,每天进行观察是很常见的。事实上,现在可以获得每小时、分钟、秒甚至毫秒的观测值。


使用的包


有许多软件包可以使我们能够估计波动率模型。我们还将使用该 quantmod 软件包,因为它可以让我们轻松访问一些标准财务数据。


数据上传


在这里,我们将使用包提供的方便的数据检索功能(getSymbolsquantmod 来检索一些数据。例如,此函数可用于检索股票数据。默认来源是 Yahoo Finance. 如果您想找出哪些股票有哪个符号,您应该能够在互联网上搜索以找到股票代码列表。下面介绍如何使用该功能。但请注意,我的经验是有时连接不起作用,您可能会收到错误消息。在这种情况下,只需在几秒钟后重试,它就可以正常工作。

getSymbols("IBM")
## \[1\] "IBM"
getSymbols("GOOG")
## \[1\] "GOOG"
getSymbols("BP")
## \[1\] "BP"

在您的环境中,您可以看到这些命令中的每一个都使用各自的股票代码名称加载一个对象。让我们看一下这些数据框之一,以了解这些数据是什么:

您可以看到该对象包含一系列每日观察结果(  OpenHighClose股价  )。我们还了解到对象被格式化为xts 对象,  是一种时间序列格式,实际上我们了解到数据范围从 2007-01-03 到 2022-03-24。

使用以下命令生成一个看起来有点花哨的图表

当我们估计波动率模型时,我们使用收益率。有一个函数可以将数据转换为收益率。

dailyReturn(IBM)


单变量 GARCH 模型


您需要做的第一件事是确保您知道要估计的 GARCH 模型类型,然后让 R 知道这一点。让我们看看:

这里的关键问题是 Mean Model (这里是 ARMA(1,1) 模型)和 GARCH Model, 这里 sGARCH(1,1) 基本上是 GARCH(1,1) 的模型。


点击标题查阅往期内容


R语言多元动态条件相关DCC-MVGARCH、常相关CCC-MVGARCH模型进行多变量波动率预测


01

02

03

04


假设您要将平均模型从 ARMA(1,1) 更改为 ARMA(1,0),即 AR(1) 模型。

uec <- ugarchspec

以下是 EWMA 模型示例。

ewm = ugarchspe


模型估计


现在我们已经指定了一个模型来估计,我们需要找到最好的参数,即我们需要估计模型。这一步是通过 it 函数来实现的。

fit(specrIBM)

fit 现在是一个包含一系列估计结果的列表。让我们看看结果

ar1 是均值模型的 AR1 系数(这里非常小且基本上不显着), alpha1 是 GARCH 方程中残差平方 beta1 的系数,是滞后方差的系数。

通常,您会希望使用模型输出进行一些进一步的分析。因此,了解如何提取参数估计值、标准误差或残差等信息非常重要。该对象 ugfit 包含所有信息。

names

如果您想提取估计的系数,您可以通过以下方式进行:

让我们绘制平方残差和估计的条件方差:

模型预测


通常您会希望使用估计模型来随后预测条件方差。用于此目的的函数是 forecast 函数。该应用程序相当简单:

hforecast(ugfit

正如你所看到的,我们已经对未来十天进行了预测,包括预期收益 ( Series) 和条件波动率(条件方差的平方根)。您可以提取条件波动率预测如下:

forecast$sigmaFor

plot

请注意,波动率是条件方差的平方根。

为了将这些预测放在上下文中,让我们将它们与估计中使用的最后 50 个观察值一起显示。

(tail(ug_var,20) )  # 得到最后20个观察值

tail(ug_res2,20 ))  # 得到最后的20个观测值

您可以看到条件方差的预测是如何从上次估计的条件方差中得出的。事实上,它从那里慢慢地向无条件方差值递减。


多元 GARCH 模型


通常,您需要对波动性进行建模。这可以通过单变量 GARCH 模型的多变量版本来完成。估计多变量 GARCH 模型比单变量 GARCH 模型要困难得多,但幸运的是,已经开发了处理大多数这些问题的程序。

在这里,我们来估计 BP、Google/Alphabet 和 IBM 股票收益率的多元波动率模型。

在这里,我们坚持使用动态条件相关 (DCC) 模型。在估计 DCC 模型时,基本上是估计单个 GARCH 类型模型。然后将这些用于标准化各个残差。作为第二步,必须指定这些标准化残差的相关动态。


模型设置


在这里,我们假设我们对三种资产中的每一种都使用相同的单变量波动率模型。

# DCC (MVN)

u.n = multispec

这个命令有什么作用?它指定了一个 AR(1)-GARCH(1,1) 模型。将这个模型复制了 3 次(因为我们拥有三种股票,IBM、Google/Alphabet 和 BP)。

我们现在使用命令估计

结果保存在 multf 其中,您可以 multf 在命令窗口中键入以查看这三个模型的估计参数。但是我们将在这里继续指定 DCC 模型。

spec


模型估计


现在我们可以使用该 fit 函数来估计模型了。

fit1 =fit(spec1)

当您估计像 DCC 模型这样的多元波动率模型时,您通常对估计的协方差或相关矩阵感兴趣。毕竟,这些模型的核心是允许股票之间的相关性随时间变化。因此,我们现在将学习如何提取这些。

# 获取基于模型的时间变化协方差(阵列)和相关矩阵

rcov(fit1) # 提取协方差矩阵

rcor(fit1) # 提取相关矩阵

要了解我们手头的数据,我们可以看一下维度:

我们得到三个输出,告诉我们我们有一个三维对象。前两个维度各有 3 个元素(想想一个 3×3 相关矩阵),然后是第三个维度,有 3834个元素。这告诉我们 cor1 存储了 3834(3×3) 个相关矩阵,一个用于每天的数据。

让我们看看最后一天的相关矩阵,第 3834天;

因此,假设我们要绘制 Google 和 BP 之间的时变相关性,即最后一天的 0.1924。在我们的收益矩阵中,  rX BP 是第二个资产,而 Google 是第三个。因此,在任何特定的相关矩阵中,我们都需要第 2 行和第 3 列中的元素。

cor1\[2,1,\] # 将最后一个维度留空意味着我们需要所有元素

as.xts(c G) # 采用xts的时间序列格式--对绘图很有用

现在我们绘制这个。

如您所见,随着时间的推移存在显着变化,相关性通常在 0.2 和 0.5 之间变化。

让我们绘制三种资产之间的所有三种相关性。


预测


通常您会希望使用您的估计模型来生成协方差或相关矩阵的预测

相关性的实际预测可以通过

mforecast$R    # 用H来预测协方差

检查结构时 Rf

您意识到该对象 Rf 是一个包含一个元素的列表。事实证明,这个列表项是一个 3 维矩阵/数组,其中包含 3×3 相关矩阵的 10 个预测。例如,如果我们想提取 IBM(第一项资产)和 BP(第二项资产)之间相关性的 10 个预测,我们必须按以下方式进行:

Rf\[\[1\]\]\[1,2,\] # IBM和BP之间的相关预测值

Rf\[\[1\]\]\[1,3,\] # IBM和谷歌之间的相关预测

Rf\[\[1\]\]\[2,3,\] # BP和Google之间的相关性预测

至于单变量波动性模型,让我们将预测与相关性的最后样本内估计一起显示。

# 这将创建一个有3个窗口的框架,由图画来填充
c(tail(cor1\[1,2,\],20),rep(NA,10))  # 得到最后20个相关观测值
c(rep(NA,20),corf_IB) # 得到10个预测值
plot 
c(tail(cor1\[1,3,\],20),rep(NA,10))  # 得到最后20个相关观测值
c(rep(NA,20),corf_IG) # 得到10个预测值
c(tail(cor1\[2,3,\],20),rep(NA,10))  # 获得最后20个相关观测值
c(rep(NA,20),corf_BG) # 得到10个预测值

相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
3月前
|
存储 数据采集 数据处理
R语言数据变换:使用tidyr包进行高效数据整形的探索
【8月更文挑战第29天】`tidyr`包为R语言的数据整形提供了强大的工具。通过`pivot_longer()`、`pivot_wider()`、`separate()`和`unite()`等函数,我们可以轻松地将数据从一种格式转换为另一种格式,以满足不同的分析需求。掌握这些函数的使用,将大大提高我们处理和分析数据的效率。
|
2月前
|
数据采集
基于R语言的GD库实现地理探测器并自动将连续变量转为类别变量
【9月更文挑战第9天】在R语言中,可通过`gd`包实现地理探测器。首先,安装并加载`gd`包;其次,准备包含地理与因变量的数据框;然后,使用`cut`函数将连续变量转换为分类变量;最后,通过`gd`函数运行地理探测器,并打印结果以获取q值等统计信息。实际应用时需根据数据特点调整参数。
126 8
|
2月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
2月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
3月前
|
数据采集 机器学习/深度学习 数据挖掘
R语言数据清洗:高效处理缺失值与重复数据的策略
【8月更文挑战第29天】处理缺失值和重复数据是数据清洗中的基础而重要的步骤。在R语言中,我们拥有多种工具和方法来有效地应对这些问题。通过识别、删除或插补缺失值,以及删除重复数据,我们可以提高数据集的质量和可靠性,为后续的数据分析和建模工作打下坚实的基础。 需要注意的是,处理缺失值和重复数据时,我们应根据实际情况和数据特性选择合适的方法,并在处理过程中保持谨慎,以避免引入新的偏差或错误。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
3月前
|
数据处理
R语言数据合并:掌握`merge`与`dplyr`中`join`的巧妙技巧
【8月更文挑战第29天】如果你已经在使用`dplyr`进行数据处理,那么推荐使用`dplyr::join`进行数据合并,因为它与`dplyr`的其他函数(如`filter()`、`select()`、`mutate()`等)无缝集成,能够提供更加流畅和一致的数据处理体验。如果你的代码中尚未使用`dplyr`,但想要尝试,那么`dplyr::join`将是一个很好的起点。