用加性多元线性回归、随机森林、弹性网络模型预测鲍鱼年龄和可视化(二)

简介: 用加性多元线性回归、随机森林、弹性网络模型预测鲍鱼年龄和可视化

用加性多元线性回归、随机森林、弹性网络模型预测鲍鱼年龄和可视化(一)https://developer.aliyun.com/article/1485792


方差分析 F 检验

anova(small,ablone_add)

根据Anova检验,我们可以拒绝无效假设。

现在让我们尝试对加性模型进行AIC和BIC的参数选择。

#在加性模型上运行AIC和BIC
step(abae_add, dtonbackward" trace0)

step(abalon_ad, direction="backward"

我们使用之前Anova F测试中的最佳模型(abalone_add)运行了AIC和BIC方法,AIC和BIC都选择了没有Length预测器的相同模型。

我们选择了BIC的模型(因为两个模型都是一样的),并将绘制拟合与残差和QQ正态图。

加性模型假设

assumptions(aln\_odad\_bic,"baln_meddbic")

这里我们看到,拟合图与残差图表明,模型违反了恒定方差,似乎有一种模式,即残差随着拟合值的增加而增加。

正态QQ图也有肥尾,表明误差可能不是正态分布。

表明我们可能需要寻找改进这个模型。尽管多重共线性对预测没有影响,但这看起来是一个极端的案例,有一个明显的模式违反了模型的假设。这可以通过几种技术来实现,例如变量选择和转换。让我们来看看变量选择方法,看看哪些变量可以用来创建另一个不违反恒定方差和正态性假设的模型。

穷举搜索

#穷举搜索 
allabaone\_add<- sumr(ruetsings  Sex + Legth  Diamter + Hight + Whole\_eght + Shllweigh + Shucke\_weght + Viscea\_weigh , data=ablontra))

for(i in c(1:8)){
  vr\_nm\[i\]=sum(all\_abwh\[i,\])-1
}
plot(var\_num,all\_a)

(besr <- which.max(adjr2))

alabaoe_ad$hch\[bsj2,\]

#画出模型参数与AIC的关系图
n * log(a\_aln\_dd$rs / n) + 2 * (2:p)

plot(aloe\_mo\_ac ~ I(2:), ylab = "AIC"
   ")

现在我们看到了一些有趣的结果。之前我们看到t检验显示一些预测因子是不显著的,但是当我们进行穷举搜索时,它表明我们确实需要所有的预测因子来创建AIC值最低的模型。从图中可以看出,AIC值随着8个参数的模型大小而下降,并且是最小的。我们将再次使用数据集中的所有预测因子来创建模型,并寻找变量转换技术。

接下来,为了稳定恒定的变化,我们将进行一些因变量和预测变量的转换。

因变量转换

Box-Cox 变换

稳定方差的方法之一是使用对数转换因变量。为了得到正确的顺序,我们使用了boxcox方法,该方法建议使用$0的值。因为在0的值上,对数可能性最大,而且区间非常接近。因此,我们将使用log(Rings)形式的转换,用于我们的加性模型。

boxcox(abloe_ad lambda = seq(-0.1, 0.1, by = 0.1))

Additive 模型与对数因变量转换

summary(abaone\_dd\_log)

将因变量进行对数转换后,我们看到t检验是显著的,它也增加了先前加法模型的调整r平方值。我们还看到,在这个模型中,几乎所有的预测因子都是显著的。让我们检查一下假设。

模型假设

下面的拟合与残差图和Q-Q图显示,对因变量进行对数转换后,结果有了很大的改善。

assumptionsba

均方根分数

kable(log_rmse(abalo)

然而,我们没有看到RMSE分数有任何改善。恒定方差问题似乎得到了改善,QQ图也看起来不错。

下一步,我们将对预测器进行一些转换,并评估模型,看看这是否有助于进一步提高预测的准确性。

Predictor 转换

回归分析

为了使我们能够进行任何预测器的转换,首先让我们看看每个预测变量和因变量的关系。转换将取决于数据的形状以及预测因子和因变量之间的关系。

scatter(abale\_tra$Lngt,abaone\_train$Rngs,"Lenth""Rngs"),

我们可以看到环和预测指标长度、直径、高度的关系几乎是线性的。我们还可以看到,重量预测指标之间的关系并不是真正的线性关系,而是可以从多项式转换中受益。因此,让我们使用高阶多项式创建一个模型,即所有重量预测指标Whole\_weight、Viscera\_weight、Shucked\_weight和Shell\_weight。

多项式

在模型中使用二阶项后,模型假设相同。

asumptons(abloe\_dd\_oly2,"Poly2 Log Model")

均方根分数

kable(log_rmse(abaoly2,"Poly2 Log Moel)

均方根分数

在这里,我们进行了一些变量转换。首先,我们按照Boxcox方法的建议对因变量进行了对数转换,并按照对数图的建议对权重预测因子进行了多项式转换。在拟合模型后,我们看到rmse比以前的模型要低,与以前拟合的加性模型相比,它也有更好的恒定方差和Q-Q图。由于我们已经进行了程度为2的多项式转换,让我们尝试拟合程度为3的另一个模型并检查其意义。

方差分析 F 检验

anova(abaloe\_addpoy2,aalon\_add_oy3)

均方根分数

kable(log\_rmse(abaloe\_dd_pol4

方差分析 F 检验

anova

均方根分数

kable(log_rmse(abloneaddpoly5

方差分析 F 检验

anova

  • 我们再次看到测试对于较低的 rmse 是显着的。让我们尝试拟合度数为 6 的模型。

均方根分数

kable(log\_rmseaban\_dd_poly6

方差分析 F 检验

anova

现在在用多项式次数为 6 进行拟合后,我们看到即使 F 检验表明它很重要,但检验的 RMSE 上升了。这表明我们现在可能已经开始过度拟合数据,即我们的模型非常接近地拟合数据,这是我们不希望发生的。

在此之前,我们看到多项式次数为 5 和 4 的测试和训练 RMSE 之间存在非常细微的差异。测试 RMSE 几乎相同。因此,我们愿意牺牲相对于更简单模型的 RMSE 非常微小的改进(第三个小数点)。因此我们选择多项式次数为 4 的模型,即模型 abalone\_add\_poly4。

for(d in um_poly){
  abalone\_add\_polyestmodel(d)  
  rmse=g\_log\_mse(balone\_ad\_poly)
  train_rmse\[d\]rmse$tran
  test_re\[d\]=rse$st
}
plot(train_rmse

我们看到多项式次数为 5 和 4 的测试和训练 RMSE 之间存在非常细微的差异。测试 RMSE 几乎相同。因此,我们愿意牺牲相对于更简单模型的 RMSE 非常微小的改进。因此我们选择多项式次数为 4 的模型,即模型 abalone\_add\_poly4。

既然我们已经选择了模型,让运行 AIC 和 BIC 方法进一步选择合适的模型,看看我们是否可以做进一步的改进。

现在让我们计算和比较高阶项的 RMSE,并绘制训练和测试数据的均方根误差。

多加法模型上的 AIC 和 BIC:

  • 既然我们已经选择了模型,让我们运行 AICBIC 方法来进一步选择合适的模型。
step(abane\_ad\_poy4, directin="backwrd", trac=FALSE)

Compare AIC 与 BIC 模型参数

_aic$call\[2\]

add_bic$call\[2\]

Anove F 检验

anova(abalone_mode

  • 选择的模型 BIC 中没有预测器 Length 。Anova F 检验的 p 值很大,因此我们无法拒绝原假设。abalone_model_add_bic 模型很重要,因此我们将继续推进并检查模型假设。

用加性多元线性回归、随机森林、弹性网络模型预测鲍鱼年龄和可视化(三)https://developer.aliyun.com/article/1485804

相关文章
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
365 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
9月前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
632 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
机器学习/深度学习 数据可视化 Windows
深度学习笔记(七):如何用Mxnet来将神经网络可视化
这篇文章介绍了如何使用Mxnet框架来实现神经网络的可视化,包括环境依赖的安装、具体的代码实现以及运行结果的展示。
219 0
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
数据可视化 算法 C++
脑研究、脑网络分析、可视化的工具箱有哪些?
本文列举并简要介绍了用于脑研究、脑网络分析和可视化的多种工具箱,如Brain Connectivity Toolbox、bctpy、人类连接组项目等,为神经科学研究者提供了丰富的分析和可视化大脑网络的工具选择。
1582 2
脑研究、脑网络分析、可视化的工具箱有哪些?
|
机器学习/深度学习 数据可视化 Linux
Seaborn可视化学习笔记(一):可视化神经网络权重分布情况
这篇文章是关于如何使用Seaborn库来可视化神经网络权重分布的教程,包括函数信息、测试代码和实际应用示例。
323 0
|
数据采集 存储 数据可视化
基于Python 网络爬虫和可视化的房源信息的设计与实现
本文介绍了一个基于Python Scrapy框架和echart库的房源信息采集与可视化系统,该系统通过自动化爬虫提高房地产数据采集效率,并通过Flask服务器实现数据的Web可视化展示,旨在帮助房地产从业人员和政策制定者高效、直观地了解房源信息。
371 1
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
282 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
Prometheus 监控 Cloud Native
在Linux中,如何使用Grafana和Prometheus进行网络监控和可视化?
在Linux中,如何使用Grafana和Prometheus进行网络监控和可视化?
|
机器学习/深度学习 数据可视化 TensorFlow
【手把手教学】如何可视化YOLOv8深度学习的网络结构并保存
【手把手教学】如何可视化YOLOv8深度学习的网络结构并保存