读取样本数据
D=D[!is.na(apply(D,1,mean)),] ; dim(D) ## [1] 416 7
查询部分数据(结果和预测因子)
head(D) ## time status age albumin edema protime bili ## 1 400 1 58.76523 2.60 1.0 12.2 14.5 ## 2 4500 0 56.44627 4.14 0.0 10.6 1.1 ## 3 1012 1 70.07255 3.48 0.5 12.0 1.4 ## 4 1925 1 54.74059 2.54 0.5 10.3 1.8 ## 5 1504 0 38.10541 3.53 0.0 10.9 3.4 ## 6 2503 1 66.25873 3.98 0.0 11.0 0.8
模型0和模型1的结果数据和预测变量集
outcome=D[,c(1,2)] covs1<-as.matrix(D[,c(-1,-2)]) covs0<-as.matrix(D[,c(-1,-2, -7)]) head(outcome) ## time status ## 1 400 1 ## 2 4500 0 ## 3 1012 1 ## 4 1925 1 ## 5 1504 0 ## 6 2503 1head(covs0) ## age albumin edema protime ## 1 58.76523 2.60 1.0 12.2 ## 2 56.44627 4.14 0.0 10.6 ## 3 70.07255 3.48 0.5 12.0 ## 4 54.74059 2.54 0.5 10.3 ## 5 38.10541 3.53 0.0 10.9 ## 6 66.25873 3.98 0.0 11.0head(covs1) ## age albumin edema protime bili ## 1 58.76523 2.60 1.0 12.2 14.5 ## 2 56.44627 4.14 0.0 10.6 1.1 ## 3 70.07255 3.48 0.5 12.0 1.4 ## 4 54.74059 2.54 0.5 10.3 1.8 ## 5 38.10541 3.53 0.0 10.9 3.4 ## 6 66.25873 3.98 0.0 11.0 0.8
推理
t0=365*5 x<-IDI (outcome, covs0, covs1, t0,npert=200) ;
输出
## Est. Lower Upper p-value ## M1 0.090 0.052 0.119 0 ## M2 0.457 0.340 0.566 0 ## M3 0.041 0.025 0.062 0
M1表示IDI
M2表示NRI
M3表示中位数差异
图形演示