I/O 多路复用的设计初衷就是解决这样的场景。我们可以把标准输入、套接字等都看做 I/O 的一路,多路复用的意思,就是在任何一路 I/O 有“事件”发生的情况下,通知应用程序去处理相应的 I/O 事件,这样我们的程序就变成了“多面手”,在同一时刻仿佛可以处理多个 I/O 事件。
select 函数就是这样一种常见的 I/O 多路复用技术。使用 select 函数,通知内核挂起进程,当一个或多个 I/O 事件发生后,控制权返还给应用程序,由应用程序进行 I/O 事件的处理。
这些 I/O 事件的类型非常多,比如:
- 标准输入文件描述符准备好可以读。
- 监听套接字准备好,新的连接已经建立成功。
- 已连接套接字准备好可以写。
- 如果一个 I/O 事件等待超过了 10 秒,发生了超时事件。
select 函数的使用方法有点复杂,我们先看一下它的声明:
int select(int maxfd, fd_set *readset, fd_set *writeset, fd_set *exceptset, const struct timeval *timeout); 返回:若有就绪描述符则为其数目,若超时则为0,若出错则为-1
在这个函数中,maxfd 表示的是待测试的描述符基数,它的值是待测试的最大描述符加 1。比如现在的 select 待测试的描述符集合是{0,1,4},那么 maxfd 就是 5,为啥是 5,而不是 4 呢?
紧接着的是三个描述符集合,分别是读描述符集合 readset、写描述符集合 writeset 和异常描述符集合 exceptset,这三个分别通知内核,在哪些描述符上检测数据可以读,可以写和有异常发生。
那么如何设置这些描述符集合呢?以下的宏可以帮助到我们。
void FD_ZERO(fd_set *fdset); void FD_SET(int fd, fd_set *fdset); void FD_CLR(int fd, fd_set *fdset); int FD_ISSET(int fd, fd_set *fdset);
下面一个向量代表了一个描述符集合,其中,这个向量的每个元素都是二进制数中的 0 或者 1。
a[maxfd-1], ..., a[1], a[0]
按照这样的思路来理解这些宏:
- FD_ZERO 用来将这个向量的所有元素都设置成 0;
- FD_SET 用来把对应套接字 fd 的元素,a[fd]设置成 1;
- FD_CLR 用来把对应套接字 fd 的元素,a[fd]设置成 0;
- FD_ISSET 对这个向量进行检测,判断出对应套接字的元素 a[fd]是 0 还是 1。
其中 0 代表不需要处理,1 代表需要处理。
实际上,很多系统是用一个整型数组来表示一个描述字集合的,一个 32 位的整型数可以表示 32 个描述字,例如第一个整型数表示 0-31 描述字,第二个整型数可以表示 32-63 描述字,以此类推。
这个时候再来理解为什么描述字集合{0,1,4},对应的 maxfd 是 5,而不是 4,就比较方便了。
因为这个向量对应的是下面这样的:
a[4],a[3],a[2],a[1],a[0]
待测试的描述符个数显然是 5, 而不是 4。
三个描述符集合中的每一个都可以设置成空,这样就表示不需要内核进行相关的检测。
最后一个参数是 timeval 结构体时间:
struct timeval { long tv_sec; /* seconds */ long tv_usec; /* microseconds */ };
这个参数设置成不同的值,会有不同的可能:
第一个可能是设置成空 (NULL),表示如果没有 I/O 事件发生,则 select 一直等待下去。
第二个可能是设置一个非零的值,这个表示等待固定的一段时间后从 select 阻塞调用中返回。
第三个可能是将 tv_sec 和 tv_usec 都设置成 0,表示根本不等待,检测完毕立即返回。这种情况使用得比较少。
通过这个例子来理解 select 函数。
int main(int argc, char **argv) { if (argc != 2) { error(1, 0, "usage: select01 <IPaddress>"); } int socket_fd = tcp_client(argv[1], SERV_PORT); char recv_line[MAXLINE], send_line[MAXLINE]; int n; fd_set readmask; fd_set allreads; FD_ZERO(&allreads); FD_SET(0, &allreads); FD_SET(socket_fd, &allreads); for (;;) { readmask = allreads; int rc = select(socket_fd + 1, &readmask, NULL, NULL, NULL); if (rc <= 0) { error(1, errno, "select failed"); } if (FD_ISSET(socket_fd, &readmask)) { n = read(socket_fd, recv_line, MAXLINE); if (n < 0) { error(1, errno, "read error"); } else if (n == 0) { error(1, 0, "server terminated \n"); } recv_line[n] = 0; fputs(recv_line, stdout); fputs("\n", stdout); } if (FD_ISSET(STDIN_FILENO, &readmask)) { if (fgets(send_line, MAXLINE, stdin) != NULL) { int i = strlen(send_line); if (send_line[i - 1] == '\n') { send_line[i - 1] = 0; } printf("now sending %s\n", send_line); size_t rt = write(socket_fd, send_line, strlen(send_line)); if (rt < 0) { error(1, errno, "write failed "); } printf("send bytes: %zu \n", rt); } } } }
程序的 12 行通过 FD_ZERO 初始化了一个描述符集合,这个描述符读集合是空的:
接下来程序的第 13 和 14 行,分别使用 FD_SET 将描述符 0,即标准输入,以及连接套接字描述符 3 设置为待检测:
接下来的 16-51 行是循环检测,这里我们没有阻塞在 fgets 或 read 调用,而是通过 select 来检测套接字描述字有数据可读,或者标准输入有数据可读。比如,当用户通过标准输入使得标准输入描述符可读时,返回的 readmask 的值为:
这个时候 select 调用返回,可以使用 FD_ISSET 来判断哪个描述符准备好可读了。如上图所示,这个时候是标准输入可读,37-51 行程序读入后发送给对端。
如果是连接描述字准备好可读了,第 24 行判断为真,使用 read 将套接字数据读出。
第 17 行是每次测试完之后,重新设置待测试的描述符集合。在 select 测试之前的数据是{0,3},select 测试之后就变成了{0}。
这是因为 select 调用每次完成测试之后,内核都会修改描述符集合,通过修改完的描述符集合来和应用程序交互,应用程序使用 FD_ISSET 来对每个描述符进行判断,从而知道什么样的事件发生。
第 18 行则是使用 socket_fd+1 来表示待测试的描述符基数。切记需要 +1。
当我们说 select 测试返回,某个套接字准备好可读,表示什么样的事件发生呢?
第一种情况是套接字接收缓冲区有数据可以读,如果我们使用 read 函数去执行读操作,肯定不会被阻塞,而是会直接读到这部分数据。
第二种情况是对方发送了 FIN,使用 read 函数执行读操作,不会被阻塞,直接返回 0。
第三种情况是针对一个监听套接字而言的,有已经完成的连接建立,此时使用 accept 函数去执行不会阻塞,直接返回已经完成的连接。
第四种情况是套接字有错误待处理,使用 read 函数去执行读操作,不阻塞,且返回 -1。
总结成一句话就是,内核通知我们套接字有数据可以读了,使用 read 函数不会阻塞。