Python 网络爬虫技巧分享:优化 Selenium 滚动加载网易新闻策略

简介: Python 网络爬虫技巧分享:优化 Selenium 滚动加载网易新闻策略

简介
网络爬虫在数据采集和信息获取方面发挥着重要作用,而滚动加载则是许多网站常用的页面加载方式之一。针对网易新闻这样采用滚动加载的网站,如何优化爬虫策略以提高效率和准确性是一个关键问题。本文将分享如何利用 Python 中的 Selenium 库优化滚动加载网易新闻的爬虫策略,以便更高效地获取所需信息。
思路分析
滚动加载是一种常见的网页加载方式,特别是在一些新闻、社交媒体等网站上。基本的思路是模拟用户向下滚动页面,触发页面加载更多内容的行为,然后通过 Selenium 提取所需信息。优化滚动加载策略主要包括滚动的次数、滚动间隔、加载等待时间等方面的调整。
编码实现环节
在编码实现环节,我们将分为以下几个步骤:

  1. 初始化 Selenium WebDriver,启动浏览器。
  2. 打开网易新闻首页。
  3. 模拟滚动加载页面,获取所需内容。
  4. 解析页面,提取我们需要的信息。
  5. 关闭浏览器,释放资源。
    实现完整代码
    下面是完整的 Python 爬虫源码示例:
    ```from selenium import webdriver
    import time

代理信息

proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"

设置代理

chrome_options = webdriver.ChromeOptions()
chrome_options.add_argument("--proxy-server=http://%s:%s@%s:%s" % (proxyUser, proxyPass, proxyHost, proxyPort))

初始化 Chrome WebDriver

driver = webdriver.Chrome(options=chrome_options)

打开网易新闻首页

driver.get("https://news.163.com/")

设置滚动加载次数和间隔时间

scroll_times = 5 # 假设滚动加载5次
scroll_interval = 2 # 每次滚动间隔2秒

模拟滚动加载

for i in range(scroll_times):

# 执行 JavaScript 代码,将页面滚动到底部
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(scroll_interval)  # 等待加载完成

提取新闻标题

titles = driver.find_elements_by_xpath("//div[@class='data_row news_article clearfix']/h3/a")
for title in titles:
print(title.text)

关闭浏览器

driver.quit()
```

  1. 技术细节
    在上面的代码中,我们首先使用 Selenium 的 Chrome 驱动器启动了一个 Chrome 浏览器,并打开了网易新闻的页面。然后,我们使用 execute_script() 方法执行 JavaScript 代码,将页面滚动到底部以触发滚动加载。通过循环执行这个过程,我们可以多次加载页面并获取更多的新闻内容。
    最后,我们使用 find_elements_by_xpath() 方法通过 XPath 表达式定位新闻标题元素,并打印出它们的文本内容。当然,您可以根据需要进一步处理这些内容,比如保存到文件或者进行进一步的分析。
  2. 优化建议和最佳实践
    在实际应用中,为了提高爬取效率和稳定性,我们可以采取一些优化措施:
    设置合适的等待时间:在模拟滚动加载时,应该给页面足够的时间来加载新的内容,但又不至于等待过长。根据网络速度和页面结构合理设置等待时间。
    异常处理:在实际操作中,可能会遇到各种异常情况,比如网络超时、页面结构变化等。在代码中加入异常处理机制,增强程序的稳定性。
    定期更新代码:由于网站可能会不断更新页面结构,导致之前的爬虫代码失效。因此,定期检查和更新爬虫代码是保持爬虫正常运行的关键。
相关文章
|
1月前
|
编解码 异构计算
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
77 9
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
|
1月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
71 3
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
1月前
|
机器学习/深度学习 编解码 自动驾驶
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
44 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
1月前
|
机器学习/深度学习 移动开发 测试技术
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
47 1
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
|
17天前
|
人工智能 安全 网络安全
网络安全领导者有效缓解团队倦怠的四步策略
网络安全领导者有效缓解团队倦怠的四步策略
|
8天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
48 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
97 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
1月前
|
计算机视觉
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
56 12
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
|
1月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
68 10
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
|
12天前
|
机器学习/深度学习 API Python
Python 高级编程与实战:深入理解网络编程与异步IO
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧、数据科学、机器学习、Web 开发和 API 设计。本文将深入探讨 Python 在网络编程和异步IO中的应用,并通过实战项目帮助你掌握这些技术。

热门文章

最新文章