大数据将植物学研究带入新境界

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

在互联网时代大数据概念的引领下,许多传统行业都已经被颠覆。在深圳举办的第19届国际植物学大会对于大数据可能带来的植物学变革也给予了极高的关注度。美国佛罗里达大学教授、大会主旨报告《大数据时代的生命之树重建和生物多样性分布研究》的报告人道格拉斯·索尔蒂斯25日接受了光明日报记者的采访。他说,依靠计算机技术,未来如果能把海量的数据进行有效整合,或许可以找到植物学变革之路。

毋庸置疑,人类目前面临着生态方面的巨大挑战。保护植物和动物迫在眉睫。索尔蒂斯说:“大数据为我们的研究提供了一个新的工具。通过海量的数据分析,我们可以从一个植物进行分析对比,通过其旧有形态和现在形态,预测出它50年之后的形态。”传统的植物学研究可以记录的内容较少,这意味着可供分析的依据就少。“而在大数据时代,科研人员的研究结果可以被最大限度地保存,这也为后人的研究提供了许多方便。”

中国物种丰富多样,因此中国保护生物多样性的任务也是艰巨的。好在大数据给中国的环保提供了一个新的机遇。索尔蒂斯说,中国在基因数据收集分析方面进展显著。分子生物学让植物学进行了一次飞跃,而大数据则让分子生物学的数据可以被分析以及利用。现在,植物学家可以通过分析数以百万计的数据来做结论,这在以前是不可想象的。“植物的基因包含着海量的数据,通过基因数据对比,就可以找到最需要被保护的物种、最适合被保护的生物领域,甚至最恰当的保护方式。这就是中国在这方面的进展。”

大数据的概念近些年被热炒,不过大多指的是计算机和移动互联网领域的数据,而植物学的数据有自身的特点。植物学上的大数据和传统意义的大数据概念并不相同。传统上讲的大数据是物理意义上的“大”,数据量很大,占据了许多电脑空间而已。植物方面的大数据类型则非常多样。比如,植物的准确地点是地理信息,植物形态的数据是物理信息,植物的内含物质是生物化学信息,而植物的基因组数据则是遗传学信息。这些数据完全是不同性质不同领域的,因此植物学的大数据就需要把涉及一个植物方方面面的数据全部进行整合统一,而这一特点将可能把植物学研究带入一个新境界。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
4月前
|
人工智能 分布式计算 大数据
超级计算与大数据:推动科学研究的发展
【9月更文挑战第30天】在信息时代,超级计算和大数据技术正成为推动科学研究的关键力量。超级计算凭借强大的计算能力,在尖端科研、国防军工等领域发挥重要作用;大数据技术则提供高效的数据处理工具,促进跨学科合作与创新。两者融合不仅提升了数据处理效率,还推动了人工智能、生物科学等领域的快速发展。未来,随着技术进步和跨学科合作的加深,超级计算与大数据将在科学研究中扮演更加重要的角色。
|
5月前
|
存储 数据可视化 数据挖掘
大数据环境下的房地产数据分析与预测研究的设计与实现
本文介绍了一个基于Python大数据环境下的昆明房地产市场分析与预测系统,通过数据采集、清洗、分析、机器学习建模和数据可视化技术,为房地产行业提供决策支持和市场洞察,探讨了模型的可行性、功能需求、数据库设计及实现过程,并展望了未来研究方向。
263 4
大数据环境下的房地产数据分析与预测研究的设计与实现
|
5月前
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的题目——北京移动用户体验影响因素研究,提供了问题一的建模方案、代码实现以及相关性分析,并对问题二的建模方案进行了阐述。
102 0
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
|
5月前
|
机器学习/深度学习 自然语言处理 数据可视化
基于Python大数据的京东产品评论的情感分析的研究,包括snwonlp情感分析和LDA主题分析
本文探讨了基于Python大数据技术对京东产品评论进行情感分析的研究,涵盖了文本预处理、情感分类、主题建模等步骤,并运用了snwonlp情感分析和LDA主题分析方法,旨在帮助电商企业和消费者做出更明智的决策。
183 1
基于Python大数据的京东产品评论的情感分析的研究,包括snwonlp情感分析和LDA主题分析
|
5月前
|
SQL 监控 大数据
"解锁实时大数据处理新境界:Google Dataflow——构建高效、可扩展的实时数据管道实践"
【8月更文挑战第10天】随着大数据时代的发展,企业急需高效处理数据以实现即时响应。Google Dataflow作为Google Cloud Platform的强大服务,提供了一个完全托管的流处理与批处理方案。它采用Apache Beam编程模型,支持自动扩展、高可用性,并能与GCP服务无缝集成。例如,电商平台可通过Dataflow实时分析用户行为日志:首先利用Pub/Sub收集数据;接着构建管道处理并分析这些日志;最后将结果输出至BigQuery。Dataflow因此成为构建实时数据处理系统的理想选择,助力企业快速响应业务需求。
272 6
|
5月前
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题二建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的问题二的建模方案和Python代码实现,包括数据预处理、特征工程、模型训练以及预测结果的输出,旨在通过数据分析与建模方法帮助中国移动北京公司提升客户满意度。
84 2
|
7月前
|
数据采集 搜索推荐 大数据
基于大数据的市场分析与消费者行为研究
【6月更文挑战第5天】大数据在市场分析与消费者行为研究中扮演关键角色。通过海量数据分析,企业能更全面、精准地了解消费者偏好和市场趋势。Python等工具帮助处理数据,揭示购买习惯,支持个性化营销策略。同时,大数据使深入理解消费者心理、决策过程成为可能,助力企业优化产品,提升客户满意度和忠诚度。在这个数据驱动的时代,大数据是洞悉市场和消费者的魔法力量。
238 2
|
8月前
|
SQL 分布式计算 Hadoop
[AIGC ~大数据] 深入理解Hadoop、HDFS、Hive和Spark:Java大师的大数据研究之旅
[AIGC ~大数据] 深入理解Hadoop、HDFS、Hive和Spark:Java大师的大数据研究之旅
203 0
|
8月前
|
人工智能 安全 大数据
喜报|瓴羊Dataphin入选上海市经信委2023创新攻关成果、IDC企业大数据治理研究代表产品
喜报|瓴羊Dataphin入选上海市经信委2023创新攻关成果、IDC企业大数据治理研究代表产品
110 0
|
存储 人工智能 Cloud Native
云原生大数据架构实践与思考-DataFunTalk
导读: 作者:振策-阿里云计算平台-产品解决方案, 20230805 本文将分享当前云原生大数据架构的发展历程/架构定义/核心能力/应用场景及趋势思考。主要包括以下四个部分: - 从大数据上云看架构 - 云原生数据平台的核心能力 - Data+AI with Cloud-Native - 未来趋势与思考
2157 0
下一篇
开通oss服务