C语言数据结构之排序整合与比较(冒泡,选择,插入,希尔,堆排序,快排及改良,归并排序,计数排序)

简介: C语言数据结构之排序整合与比较(冒泡,选择,插入,希尔,堆排序,快排及改良,归并排序,计数排序)

前言:排序作为数据结构中的一个重要模块,重要性不言而寓,我们的讲法为下理论掌握大致的算法结构,再上代码及代码讲解,助你一臂之力。



一,冒泡

冒泡排序应该是大家学习以来第一个认识的排序方法,它的思想也是简单暴力,从第一元素开始每一个元素和前一个元素比较,如果不符合顺序就交换位置,直到最后一个元素,每一趟排序都可以排出那趟中一个最大的值并将它放到末尾位置

这是第一趟排序,第二次排序的话因为最后一个元素的位置已经排好了,所以可以少排一个元素

最后一趟就两个元素了,自然简单

最后得到 6 7 8 9。排序就成功啦

void BubbleSort(int* a, int n) {//n是数组的元素个数
  for (int i = n - 1; i > 0; i--) {//外层循坏,因为每次只能拍好一个元素,所以需要排多次
    for (int j = 0; j < i; j++) {//内层循坏,每次两两比较
      if (a[j] > a[j + 1])  
        swap(a + j, a + j + 1);//交换函数
    }
  }
}

二,选择排序

选择排序相较于冒泡排序更加简单,它的核心思想是每次从序列中选出一个最大的和最小的,然后继续比较中间的序列,直到序列就一个元素

注意它和冒泡排序之间的差距,冒泡排序每趟排序可能对数组进行了大改动,而选择排序只会交换最大和最小以及它们应该所处的位置。但它们都有相同点,时间复杂度都是O(n^2)。

选择有一个大坑,可能我们初写是想不出来的,但最后结果会让我们失败。先看一组排序,我们不进行改良,用原思路解决

这是为什么呢,不难看出是因为MAX处于了一个特殊位置,导致max的位置发生了改变,达不到我们预期的特点,那我们应该怎么解决呢,答案就算加一个判断和更新,看我接下来的代码

void SelectSort(int* a, int n) {
  int max, min;
  int k = n;
  for (int i = 0; i < k; i++, k--) {//外层循坏,每次少排两个元素
    max = i;//先让max和min都赋值为第一个元素
    min = i;
    for (int j = i+1; j < k; j++) {//内层循坏,每次排出两个元素的位置
      if (a[j] > a[max])//对大小值更新
        max = j;
      if (a[j] < a[min])
        min = j;
    }
    if (max == i)//如果max处于特殊位置,我们就提前交换更新位置,防止出错
    max = min;   
    swap(a + min, a + i);
    swap(a + max, a + k - 1);
  }
}

三,插入排序

插入排序有一点像冒泡排序但是它们还是有一定的差距,插入排序是也是每趟将一个元素放到它应该所处的位置,但它是每个元素和前面一个元素进行比较,如果顺序不符合就交换,如果交换之后还不符合的话就继续交换,直到处于它与前面的元素不符合交换条件。

插入排序像一个跳级生,直到处于自己应该属于的位置,而冒泡排序稳扎稳打,每次都会全部比较。因此再大多数情况下插入排序会优于冒泡排序。

void InsertSort(int* a, int n) {
  for (int i = 1; i < n; i++) {//外层循坏,每次会排好一个元素
    int j = i;
    while (a[j] < a[j - 1]) {  //如果和前面元素比较结果不符合要求,就不断交换直到位置正确
      swap(a + j, a + j - 1);
      j--;        //像前面推进,方便比较
    }
  }
}

希尔排序前言:我们来思考一个问题,插入排序啥时候效率最好,啥时候最坏呢,从上面代码我们可以看出来,外层循坏我们是无法改变的,我们能改变的就是内层循坏,那我们如何减少内存排序的次数呢?没错就是内存循坏条件不符合,另一个方面来说就是让序列排序之前尽量接近有序,如果元素接近有序,它的时间复杂度就会接近O(n)。这个优化之后就是希尔排序啦

四,希尔排序

在上段话中我们可以知道当数据接近有序的话,那么插入排序的效率就越快,那如果我们该如何让数据接近有序呢?这里我们借鉴插入排序,我们如果把数据把数据间隔为gap的数据分为一组,并且对它们进行排序,最后K逐渐减小(一般默认gap初始值为n/2,每次减半),当gap=1时就是一个完全的插入排序,而之前的排序已经将数据进行预排序,因此最后一次排序的时间复杂度会小于O(n^2)。到底它的时间复杂度会为多少,这个涉及到了数学知识,不过我们的先辈大概算出来范围为O(n^1.3)。这有时一个优秀的排序算法,接下来我们看图掌握细节。

这个就是间隔为gap的值进行插入排序,每次gap值除2,这样可以尽量把大的数据带到前面(或者把小的数据带到前面,),把小的数据带到后面。相当于预排序了,最后一次完全插入排序就只是作为补充和检查,不会出现每次都要交换到头。

void ShellSort(int* a, int n) {
  int gap = n / 2;//设置gap值
  for (int i = gap; i > 0; i /= 2) {//i=gap,每次除2
    for (int j = i; j < n; j++) {//从gap位置开始,每次和前面距离为gap的距离比较并适当交换
      int k = j;
      while (k - i >= 0) {  //这个只是为了交换到0,函数里面有如果不符合就会跳出循坏的语句
        if (a[k] < a[k - i])
          swap(a + k, a + k - i); //不符合就交换,循坏继续
        else break;   //符号就跳出
        k -= gap;     //间隔为gap为一组
      }
    }
  }
}

五,堆排序

我以前写的文章链接CSDN

六,快排两种改良及非递归实现、

快排我们可能在C的库中见过并且用过,那么它的思想是怎么样的呢?快排是每次只排好一个数据,把大于这个数据的元素放到它的一边,小于它的数据放到另一边,然后把左右分别排好,那么具体怎么实现呢?快排会每次选取一个数据作为标记数据,这个数据一般是要进行筛选,防止取到了最大值和最小值,如果取到了的话,那么它的时间复杂度会到O(n^2),这个大家可以先听完再去思考为什么时间复杂度会上升。取到之后,我们的第一种思想是从数组左右开始比较,左边找到一个大于这个数据的值,右边找到一个小于这个数据的值,然后交换两个数据的值,最后交换标记数据和左右相遇的位置。

接下来看第一种思路的代码实现

int PartSort1(int* a, int left, int right) {
  if (left >= right)
    return;
  int mid = Middlenum(a, left, right, (left + right) / 2);//三数取中
  swap(a + mid, a + left);  //将标记数据换到下标为0的位置
  int left1 = left+1;       //左右初始化
  int right1 = right;
  int key = left;           //记录标记数据
  while (left1 < right1) {      
    while (left1<right1 && a[right1]>=a[key])//找大
      right1--;
    while (left1<right1 && a[left1]<=a[key])//找小
      left1++;
    if(right1!=left1)
    swap(a + right1, a + left1);  //左右下标不相等交换
  }
  swap(&a[key], &a[right1]);       //把标记数据放到应该处于的位置
  PartSort1(a, left, left1-1);    //左右数据递归处理
  PartSort1(a, right1+1,right );
}

有大佬觉得每次交换麻烦,于是想出来一种方法,我们直接把原来属于标记数据的位置再逻辑上变为一个坑,发现大于的数据就把数据挪到“坑”里面,交换坑和数据位置,其实就是覆盖,将坑的下标换为大于标记数据的位置,再找小于标记数据的位置,和坑交换,最后交换左右相遇位置和坑的位置,将标记数据放入坑里面,再左右递归即可。

挖坑法代码实现:

int PartSort2(int* a, int left, int right) {
  if (left >= right)
    return;
  int mid = Middlenum(a, left, right, (left + right) / 2);//三数取中
  swap(a + mid, a + left);  //将标记数据换到下标为0的位置
  int left1 = left + 1;     //左右初始化
  int right1 = right;
  int key = a[left];          //记录标记数据
  int hole = left;      //挖坑下标
  while (left1 < right1) {
    while (left1 < right1 && a[right1] >= key)//找大
      right1--;
    a[hole] = a[right1];        //和坑交换位置
    hole = right1; 
    while (left1 < right1 && a[left1] <= key) //找小
      left1++;
    a[hole] = a[left1];   //和坑交换位置
    hole = left1;
  }
  a[hole] = key;    //把标记数据放入坑
  PartSort1(a, left, left1 - 1);      //左右递归排序
  PartSort1(a, right1 + 1, right);
}

第三种思路类似于推箱子,两个指针从非标记数据的第一个数据开始,把大于标记数据的值往后面推,小于标记数据的值往前面推,最后交换走的慢的那个指针位置和标记数据的值,因为此时恰好这个指针的前面是小于标记数据的值,后面是大于标记数据的值。

双指针法:

int PartSort3(int* a, int left, int right) {
  if (left >= right)
    return;
  int mid = Middlenum(a, left, right, (left + right) / 2);//三数取中
  swap(a + mid, a + left);  //将标记数据换到下标为0的位置
  int prv = left;       //双指针位置初始化
  int cur = left + 1;
  int key = left;     
  while (cur <=right) {         //防止快指针越界访问
    if (a[cur] <=a[key] && ++prv != cur)  //两个指针不相等时,并且找到了大于标记数据的值时交换
      swap(a + prv, a + cur);
    cur++;
  }
  swap(a + key, a + prv);      //交换慢指针和标记数据的值
  PartSort3(a, left, prv-1);     //左右递归排序
  PartSort3(a, prv+1, right);
}

现在我们来讲非递归实现,为什么我们要将这个呢?这涉及到了电脑的内存分配,递归是要占用比较多的栈空间,而栈空间很小,因此我们不能过于利用栈空间,属于非递归就是解决这个问题。递归改非递归的核心就是根据思想模拟,比如递归我们可以参考栈,先进后出,我们也就是利用递归的思想来解决这个问题

代码实现:

void QuickSortNonR(int* a, int left, int right) {
  Stack* ps;          //建栈
  ps = (Stack*)malloc(sizeof(Stack));
  StackInit(ps);    //初始化栈
  StackPush(ps, left);    //把原始位置的左右下标入栈
  StackPush(ps, right);
  while (StackEmpty(ps)!=1) {       //只要栈不为空就继续
    int right1 = StackTop(ps);   //把左右下标取出来并出栈
    StackPop(ps);
    int left1 = StackTop(ps);
    StackPop(ps);
    if (left1 >= right1)    //对标记数据排序,省略注释,不理解看前面讲解
      continue;
    int mid = Middlenum(a, left1, right1, (left1 + right1) / 2);
    swap(a + mid, a + left1);
    int prv = left1;
    int cur = left1 + 1;
    int key = left1;
    while (cur <= right1) {
      if (a[cur] <= a[key] && ++prv != cur)
        swap(a + prv, a + cur);
      cur++;
    }
    swap(a + key, a + prv);
    StackPush(ps, prv+1);       //把排序之后的左右部分入栈
    StackPush(ps,right1);
    StackPush(ps, left1);
    StackPush(ps, prv - 1);
  }
}

栈的代码及讲解:CSDN

快排时间复杂度讲解

此时是最理想的状态,每次排序刚刚好取到中间值,时间复杂度为nlogn

我们看最差的状态

不难发现此时的时间复杂度为n^2,因此我们需要三数取中防止一直取到最大值或者最小值。

七,归并排序

归并排序我们不用文章描述,我们直接看图

归并排序就是分解为一块快小块进行排序,然后将小快排序合并,中间有一个细节,我们不能边比较边改变原始数组,不然会将数组覆盖,无法比较成功,因此我们还需要一个额外的数组,我们来看代码

void MergeSort(int* a, int n) {
  int* temp = (int*)malloc(sizeof(a));//开一个数组用来记录改变
  Merge(a, temp, 0, n);
}
void Merge(int* a, int *temp,int left, int right) {
  if (left + 1 < right) {                      //先进行左右递归排序分解为小块直到只有一个元素
    Merge(a, temp, left, (left + right) / 2);
    Merge(a, temp, (left + right) / 2+1, right);
  }
  if (left == right)      //此时只有一个元素无法比较,直接返回
    return;
  int count = left;       //接下来会用来标记
  int mid = (left + right) / 2;   //找到两需要排序数组的边界,作为接下来的循坏条件
  int left1 = left;         //寻找左右数组起始位置2
  int right1 = (left+right)/2+1;
  while (left1 <= mid && right1 <= right) {  //越界就结束循坏
    if (a[left1] < a[right1]) {      //左右比较放进临时数组
      temp[count++] = a[left1++];
    }
    else
      temp[count++] = a[right1++];
  }
  while (left1 <= mid)          //此时只有一个数组完全录入了临时数组,我们需要把另一个数组录入
    temp[count++] = a[left1++];
  while (right1 <= right)
    temp[count++] = a[right1++];
  memcpy(a + left, temp + left, (right-left+1)*4);//C语言库函数将改变的值复制回原数组,方便下一次排序
}

非递归实现改怎么搞呢?我们这里不能用栈,因为归并排序是需要同层一层递归数据进行比较,显然栈是无法实现的,我们还是老老实实用循坏两两比较,设置一个gap值作为每个数组的大小,然后进行++,但是我们要考虑越界问题,还有gap每次乘2.

void MergeSortNonR(int* a, int n) {
  int gap = 1;  //gap值初始化
  int* temp = (int*)malloc(sizeof(int) * n);  //开辟临时空间作为中转
  while (gap < n) {    //只要gap小于数组大小就能比较
    for (int i = 0; i < n; i += 2*gap) {      //每一次比较可能有大于两个数字,所以要循坏直到没有数据
      int left = i;           //左右数组边界赋值
      int right = i + gap;
      int count=i;          //标记临时数组的进度
    while(right < n && left < i + gap && right < i + 2 * gap) {   //只要不越界就继续比较
        if (a[left] > a[right])
          temp[count++] = a[right++];
        else
          temp[count++] = a[left++];
      }
      while (left < i + gap && left < n)//此时只有一个数组完全录入了临时数组,我们需要把另一个数组录入
        temp[count++] = a[left++];
      while(right < i + 2 * gap && right < n)
        temp[count++] = a[right++];
      memcpy(a + i, temp + i, (count - i) * 4);//C语言库函数将改变的值复制回原数组,方便下一次排序
    }
    gap *= 2;//gap值改变
  }
}

八,计数排序

计数排序人如其名,用数组就是记录每个数字出现的次数,利用数组特性,将数字按顺序直接放进去,我们需要记录最大值和最小值来确定数组的范围,所以我们返回原数组时需要加上最小值即可,但是计数排序有很明显的缺点,就是只能排整形,并且如果最大值和最小值差距过大会浪费很多空间。

void CountSort(int* a, int n) {
  int max = a[0]; //寻找最大最小的变量
  int min = a[0]; 
  for (int i = 0; i < n; i++) {    //循坏找到最大最小值
    if (a[i] > max)
      max = a[i];
    if (a[i] < min)
      min = a[i];
  }
  int* arr = (int*)malloc(sizeof(int) * (max-min)); //开辟记录数组
  memset(arr, 0, sizeof(int) * (max - min)); //C语言库函数数组全部初始化为0
  for (int i = 0; i < n; i++)
    arr[a[i]-min]++;       //如果有这个数就对应位置加1
  for (int i = 0, j = 0; i < n; i++) {   //返回原数组,通过覆盖实现
    while (arr[j] == 0)
      j++;           //先找到存在的数的位置
    a[i] = j + min;  //覆盖原始数组
    arr[j]--;    //覆盖之后就减减
  }
}

博客创造不易,耗费颇多心血,如果你有收获希望点赞收藏加关注

相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
63 1
|
2月前
|
存储 算法 搜索推荐
【趣学C语言和数据结构100例】91-95
本文涵盖多个经典算法问题的C语言实现,包括堆排序、归并排序、从长整型变量中提取偶数位数、工人信息排序及无向图是否为树的判断。通过这些问题,读者可以深入了解排序算法、数据处理方法和图论基础知识,提升编程能力和算法理解。
59 4
|
2天前
|
存储 算法 安全
【C语言程序设计——选择结构程序设计】按从小到大排序三个数(头歌实践教学平台习题)【合集】
本任务要求从键盘输入三个数,并按从小到大的顺序排序后输出。主要内容包括: - **任务描述**:实现三个数的排序并输出。 - **编程要求**:根据提示在编辑器中补充代码。 - **相关知识**: - 选择结构(if、if-else、switch) - 主要语句类型(条件语句) - 比较操作与交换操作 - **测试说明**:提供两组测试数据及预期输出。 - **通关代码**:完整代码示例。 - **测试结果**:展示测试通过的结果。 通过本任务,你将掌握基本的选择结构和排序算法的应用。祝你成功!
16 4
|
2月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
79 5
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
72 1
|
3天前
|
算法 C语言
【C语言程序设计——函数】利用函数求解最大公约数和最小公倍数(头歌实践教学平台习题)【合集】
本文档介绍了如何编写两个子函数,分别求任意两个整数的最大公约数和最小公倍数。内容涵盖循环控制与跳转语句的使用、最大公约数的求法(包括辗转相除法和更相减损术),以及基于最大公约数求最小公倍数的方法。通过示例代码和测试说明,帮助读者理解和实现相关算法。最终提供了完整的通关代码及测试结果,确保编程任务的成功完成。
26 15
|
3天前
|
C语言
【C语言程序设计——函数】亲密数判定(头歌实践教学平台习题)【合集】
本文介绍了通过编程实现打印3000以内的全部亲密数的任务。主要内容包括: 1. **任务描述**:实现函数打印3000以内的全部亲密数。 2. **相关知识**: - 循环控制和跳转语句(for、while循环,break、continue语句)的使用。 - 亲密数的概念及历史背景。 - 判断亲密数的方法:计算数A的因子和存于B,再计算B的因子和存于sum,最后比较sum与A是否相等。 3. **编程要求**:根据提示在指定区域内补充代码。 4. **测试说明**:平台对代码进行测试,预期输出如220和284是一组亲密数。 5. **通关代码**:提供了完整的C语言代码实现
39 24
|
3天前
|
存储 算法 C语言
【C语言程序设计——函数】素数判定(头歌实践教学平台习题)【合集】
本内容介绍了编写一个判断素数的子函数的任务,涵盖循环控制与跳转语句、算术运算符(%)、以及素数的概念。任务要求在主函数中输入整数并输出是否为素数的信息。相关知识包括 `for` 和 `while` 循环、`break` 和 `continue` 语句、取余运算符 `%` 的使用及素数定义、分布规律和应用场景。编程要求根据提示补充代码,测试说明提供了输入输出示例,最后给出通关代码和测试结果。 任务核心:编写判断素数的子函数并在主函数中调用,涉及循环结构和条件判断。
39 23
|
2天前
|
存储 编译器 C语言
【C语言程序设计——函数】回文数判定(头歌实践教学平台习题)【合集】
算术运算于 C 语言仿若精密 “齿轮组”,驱动着数值处理流程。编写函数求区间[100,500]中所有的回文数,要求每行打印10个数。根据提示在右侧编辑器Begin--End之间的区域内补充必要的代码。如果操作数是浮点数,在 C 语言中是不允许直接进行。的结果是 -1,因为 -7 除以 3 商为 -2,余数为 -1;注意:每一个数据输出格式为 printf("%4d", i);的结果是 1,因为 7 除以 -3 商为 -2,余数为 1。取余运算要求两个操作数必须是整数类型,包括。开始你的任务吧,祝你成功!
17 1
|
1月前
|
存储 C语言 开发者
【C语言】字符串操作函数详解
这些字符串操作函数在C语言中提供了强大的功能,帮助开发者有效地处理字符串数据。通过对每个函数的详细讲解、示例代码和表格说明,可以更好地理解如何使用这些函数进行各种字符串操作。如果在实际编程中遇到特定的字符串处理需求,可以参考这些函数和示例,灵活运用。
75 10