容器化运维:容器调度和服务编排

简介: 【2月更文挑战第15天】

考虑如何在集群中创建容器,也就是容器如何调度的问题;容器创建后如何运作才能对外提供服务,也就是服务如何编排的问题。

容器调度

容器调度的问题,说的是现在集群里有一批可用的物理机或者虚拟机,当服务需要发布的时候,该选择哪些机器部署容器的问题。


比如集群里只有 10 台机器,并且已经有 5 台机器运行着其他容器,剩余 5 台机器空闲着,如果此时有一个服务要发布,但只需要 3 台机器就行了,这个时候可以靠运维人为的从 5 台空闲的机器中选取 3 台机器,然后把服务的 Docker 镜像下载下来,再启动 Docker 容器服务就算完成发布。但如果集群机器的规模扩大到几十台或者上百台时,要发布的服务也有几十个或者上百个的时候,由于每个服务对容器的要求,以及每台机器上正在运行的容器情况变得很复杂,就不太可能靠人肉运维了。


容器调度要解决的问题如下:

1)主机过滤

主机过滤是为了解决容器创建时什么样的机器可以使用的问题,主要包含两种过滤。

  • 存活过滤。也就是说必须选择存活的节点,因为主机也有可能下线或者是故障状态。
  • 硬件过滤。打个比方,现在你面对的集群有 Web 集群、RPC 集群、缓存集群以及大数据集群等,不同的集群硬件配置差异很大,比如 Web 集群往往用作计算节点,它的 CPU 一般配置比较高;而大数据集群往往用作数据存储,它的磁盘一般配置比较高。这样的话如果要创建计算任务的容器,显然就需要选择 Web 集群,而不是大数据集群。


2)策略调度

调度策略主要是为了解决容器创建时选择哪些主机最合适的问题,一般都是通过给主机打分来实现的。比如 Swarm 就包含了两种类似的策略:spread 和 binpack,它们都会根据每台主机的可用 CPU、内存以及正在运行的容器的数量来给每台主机打分。spread 策略会选择一个资源使用最少的节点,以使容器尽可能的分布在不同的主机上运行。它的好处是可以使每台主机的负载都比较平均,而且如果有一台主机有故障,受影响的容器也最少。而 binpack 策略恰恰相反,它会选择一个资源使用最多的节点,好让容器尽可能的运行在少数机器上,节省资源的同时也避免了主机使用资源的碎片化。

具体选择哪种调度策略,还是要看实际的业务场景,通常的场景有:

  • 各主机的配置基本相同,并且使用也比较简单,一台主机上只创建一个容器。这样的话,每次创建容器的时候,直接从还没有创建过容器的主机当中随机选择一台就可以了。
  • 在某些在线、离线业务混布的场景下,为了达到主机资源使用率最高的目标,需要综合考量容器中跑的任务的特点,比如在线业务主要使用 CPU 资源,而离线业务主要使用磁盘和 I/O 资源,这两种业务的容器大部分情况下适合混跑在一起。
  • 还有一种业务场景,主机上的资源都是充足的,每个容器只要划定了所用的资源限制,理论上跑在一起是没有问题的,但是某些时候会出现对每个资源的抢占,比如都是 CPU 密集型或者 I/O 密集型的业务就不适合容器混布在一台主机上。


服务编排

1)服务依赖

大部分情况下,微服务之间是相互独立的,在进行容器调度的时候不需要考虑彼此。但有时候也会存在一些场景,比如服务 A 调度的前提必须是先有服务 B,这样的话就要求在进行容器调度的时候,还需要考虑服务之间的依赖关系。


Docker Compose 这种通过 yaml 文件来进行服务编排的方式是比较普遍的算法,通过类似 yaml 文件的方式定义了服务扩容的模板,模板除了定义了服务创建容器时的镜像配置、服务池配置以及主机资源配置以外,还定义了关联依赖服务的配置。比如微博的 Feed 服务依赖了 user 服务和 card 服务,假如 user 服务扩容的模板 ID 为 1703271839530000,card 服务扩容的模板 ID 为 1707061802000000,那么 Feed 服务的扩容模板里就会像下面这样配置,它代表了每扩容 10 台 Feed 服务的容器,就需要扩容 4 台 user 服务的容器以及 3 台 card 服务的容器。

{"Sid":1703271839530000,"Ratio":0.4}
{"Sid":1707061802000000,"Ratio":0.3}


2)服务发现

容器调度完成以后,容器就可以启动了,但此时容器还不能对外提供服务,服务消费者并不知道这个新的节点,所以必须具备服务发现机制,使得新的容器节点能够加入到线上服务中去。


比较常用的服务发现机制包括两种,一种是基于 Nginx 的服务发现,一种是基于注册中心的服务发现。

  • 基于 Nginx 的服务发现

这种主要是针对提供 HTTP 服务的,当有新的容器节点时,修改 Nginx 的节点列表配置,然后利用 Nginx 的 reload 机制,会重新读取配置从而把新的节点加载进来。比如基于 Consul-Template 和 Consul,把 Consul 作为 DB 存储容器的节点列表,Consul-Template 部署在 Nginx 上,Consul-Template 定期去请求 Consul,如果 Consul 中存储的节点列表发生变化,就会更新 Nginx 的本地配置文件,然后 Nginx 就会重新加载配置。

  • 基于注册中心的服务发现

这种主要是针对提供 RPC 服务的,当有新的容器节点时,需要调用注册中心提供的服务注册接口。在使用这种方式时,如果服务部署在多个 IDC,就要求容器节点分 IDC 进行注册,以便实现同 IDC 内就近访问。


3)自动扩缩容

容器完成调度后,仅仅做到有容器不可用时故障自愈还不够,有时候还需要根据实际服务的运行状况,做到自动扩缩容。


一个很常见的场景就是,大部分互联网业务的访问呈现出访问时间的规律性。白天和晚上的使用人数要远远大于凌晨的使用人数;而白天和晚上的使用人数也不是平均分布的,午高峰 12 点半和晚高峰 10 点半是使用人数最多的时刻。这个时候就需要根据实际使用需求,在午高峰和晚高峰的时刻,增加容器的数量,确保服务的稳定性;在凌晨以后减少容器的数量,减少服务使用的资源成本。


常见的自动扩缩容的做法是根据容器的 CPU 负载情况来设置一个扩缩容的容器数量或者比例,比如可以设定容器的 CPU 使用率不超过 50%,一旦超过这个使用率就扩容一倍的机器。


要考虑到 Kubernetes 本身的复杂性以及概念理解的门槛,对于大部分中小业务团队来说,在生产环境上使用 Kubernetes 都会显得大材小用,并且还需要部署并运维 Kubernetes 周边的一些基础设施,比如 etcd 等。

相关文章
|
2月前
|
Kubernetes 调度 异构计算
生产环境 K8S + Deepseek 实现大模型部署 和 容器调度(图解+史上最全)
生产环境 K8S + Deepseek 实现大模型部署 和 容器调度(图解+史上最全)
生产环境 K8S + Deepseek 实现大模型部署 和 容器调度(图解+史上最全)
|
4月前
|
人工智能 边缘计算 运维
容器化浪潮下的AI赋能:智能化运维与创新应用
近年来,容器技术以其轻量、高效、可移植的特性成为云原生时代的基石,推动应用开发和部署方式革新。随着容器化应用规模扩大,传统运维手段逐渐力不从心。AI技术的引入为容器化生态带来新活力,实现智能监控、自动化故障诊断与修复及智能资源调度,提升运维效率和可靠性。同时,AI驱动容器化创新应用,如模型训练、边缘计算和Serverless AI服务,带来更多可能性。未来,AI与容器技术的融合将更加紧密,推动更智能、高效的运维平台和丰富的创新应用场景,助力数字化转型。
|
3月前
|
Kubernetes 安全 数据安全/隐私保护
容器云服务是什么?
容器云基于容器技术,实现应用及其依赖的标准化封装,支持跨平台快速部署和高效管理。与传统虚拟机相比,容器共享宿主机操作系统内核,资源占用少、启动快,但隔离性稍弱。Docker Engine通过Dockerfile定义应用环境并生成容器镜像,适合单机场景;Kubernetes作为行业标准编排工具,支持自动扩缩容和服务发现,适用于大规模集群管理;OpenShift提供企业级全流程平台,满足合规要求;Rancher简化多云环境下的Kubernetes管理;CoreOS Tectonic专注于安全性,适用于高安全需求领域。容器云正朝着无服务器化、智能运维和边缘协同等方向发展。
172 2
|
4月前
|
机器学习/深度学习 人工智能 运维
智能调度:自动化运维的"最强大脑"进化论
智能调度:自动化运维的"最强大脑"进化论
270 15
|
4月前
|
人工智能 监控 安全
容器化AI模型的安全防护:构建可信的AI服务
在AI模型广泛应用的背景下,容器化AI模型的安全防护至关重要。主要安全威胁包括数据窃取、模型窃取、对抗样本攻击和模型后门攻击等。为应对这些威胁,需采取多层次防护措施:容器安全(如使用可信镜像、限制权限)、模型安全(如加密、水印)、数据安全(如加密、脱敏)和推理安全(如输入验证、异常检测)。此外,利用开源工具如Anchore Engine、Falco和ART等,可进一步加强防护。遵循安全开发生命周期、最小权限原则和深度防御等最佳实践,确保AI服务的安全性和可信度。
|
6月前
|
人工智能 运维 Kubernetes
阿里云容器服务AI助手2.0 - 新一代容器智能运维能力
2024年11月,阿里云容器服务团队进一步深度融合现有运维可观测体系,在场景上覆盖了K8s用户的全生命周期,正式推出升级版AI助手2.0,旨在更好地为用户使用和运维K8S保驾护航。
|
5月前
|
人工智能 运维 Linux
AI驱动的操作系统服务体验:大模型时代的运维革新
AI驱动的操作系统服务体验:大模型时代的运维革新
126 5
|
6月前
|
关系型数据库 MySQL Docker
《docker高级篇(大厂进阶):5.Docker-compose容器编排》包括是什么能干嘛去哪下、Compose核心概念、Compose使用三个步骤、Compose常用命令、Compose编排微服务
《docker高级篇(大厂进阶):5.Docker-compose容器编排》包括是什么能干嘛去哪下、Compose核心概念、Compose使用三个步骤、Compose常用命令、Compose编排微服务
363 24
|
6月前
|
关系型数据库 MySQL Docker
《docker高级篇(大厂进阶):5.Docker-compose容器编排》包括是什么能干嘛去哪下、Compose核心概念、Compose使用三个步骤、Compose常用命令、Compose编排微服务
《docker高级篇(大厂进阶):5.Docker-compose容器编排》包括是什么能干嘛去哪下、Compose核心概念、Compose使用三个步骤、Compose常用命令、Compose编排微服务
394 6
|
7月前
|
Kubernetes Cloud Native Docker
云原生之旅:从传统架构到容器化服务的演变
随着技术的快速发展,云计算已经从简单的虚拟化服务演进到了更加灵活和高效的云原生时代。本文将带你了解云原生的概念、优势以及如何通过容器化技术实现应用的快速部署和扩展。我们将以一个简单的Python Web应用为例,展示如何利用Docker容器进行打包和部署,进而探索Kubernetes如何管理这些容器,确保服务的高可用性和弹性伸缩。

热门文章

最新文章