Linux用户空间和内核空间所有15种内存分配方法

简介: Linux用户空间和内核空间所有15种内存分配方法

在Linux操作系统中,内存管理是一个关键的系统功能。用户空间和内核空间分别使用不同的函数来申请内存。以下是用户空间和内核空间内存申请函数的详细列表:

Linux用户空间内存申请函数

1. malloc() 函数:

void* malloc(size_t size);

用于在堆区分配一块指定大小的内存空间。如果成功分配,返回一个指向这块内存的指针;否则,返回`NULL`。

2. calloc() 函数:

void* calloc(size_t num, size_t size);

分配并初始化为0的一块连续内存空间。它会为`num`个大小为`size`的对象分配内存,并将所有字节初始化为0。

3. realloc() 函数:

void* realloc(void* ptr, size_t new_size);

改变之前通过`malloc()`或`calloc()`等函数分配的内存块的大小。它可以扩大或缩小已分配的内存区域。如果内存无法重新分配,则返回`NULL`,原有的内存区域保持不变。

4. alloca() 函数(非标准库函数,某些编译器支持):

void* alloca(size_t size);

在栈上动态分配内存。它的优点是不需要手动释放,但缺点是可能导致栈溢出。

5. 使用静态存储区:

在程序开始时就为其分配了内存,由编译器自动管理,生命周期从程序开始到结束。

6. 使用全局变量和局部静态变量:

全局变量在整个程序运行期间都存在,而局部静态变量只在声明它们的函数或代码块退出后才被销毁。

请注意,在使用这些函数分配内存之后,必须确保在不再需要该内存时调用相应的内存释放函数来释放它,以避免内存泄漏。对于`malloc()`、`calloc()`和`realloc()`分配的内存,应使用`free()`函数进行释放。

Linux内核空间内存申请函数

1. kmalloc() 函数:

void *kmalloc(size_t size, gfp_t flags);

分配指定大小的连续物理内存块,并返回指向该内存块的指针。`flags`参数用于控制内存分配的行为和特性。

2. vmalloc() 函数:

void *vmalloc(unsigned long size);

分配虚拟内存,而不是连续的物理内存。分配的内存可能分布在多个物理页面上,但对进程来说是连续的。

3. get_free_pages()和 __get_free_page()函数:

unsigned long get_free_pages(gfp_t gfp_mask, unsigned int order);

unsigned long __get_free_page(gfp_t gfp_mask);

这两个函数分别用于分配特定数量的连续物理页(以2的幂为单位)和单个物理页。`order`参数表示需要多少个连续的页,例如`order=0`代表一页。

4. alloc_pages(), __alloc_pages():

struct page *alloc_pages(gfp_t gfp_mask, unsigned int order);

struct page *__alloc_pages(gfp_t gfp_mask, unsigned int order);

与`get_free_pages()`类似,这些函数用于分配一组连续的物理页,但它们返回一个指向`struct page`结构体的指针列表。

5. alloc_page(), __alloc_page():

struct page *alloc_page(gfp_t gfp_mask);

struct page *__alloc_page(gfp_t gfp_mask);

分配一个单独的物理页,返回一个指向`struct page`的指针。

6. dma_alloc_coherent():

void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag);

在设备映射区域分配一块连续的物理内存,以便于DMA传输。分配的内存对于处理器来说是可直接访问的,并且确保不会被内核抢占或迁移。

7. kzalloc():

void *kzalloc(size_t size, gfp_t flags);

类似于`kmalloc()`,但在分配内存后将其所有字节初始化为0。

8. kfree():

void kfree(const void *ptr);

释放通过上述内核内存分配函数分配的内存。

9. 其他特殊的内存分配函数

如`page_frag_cache()`、`__get_dma_pages()`等,用于满足特定场景的需求。

请注意,在使用这些函数时,应根据具体需求选择适当的内存分配函数,并遵循正确的使用规则,避免内存泄漏或其他问题。

目录
相关文章
|
15天前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
15天前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
16天前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
16天前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####
|
19天前
|
负载均衡 算法 Linux
深入探索Linux内核调度机制:公平与效率的平衡####
本文旨在剖析Linux操作系统内核中的进程调度机制,特别是其如何通过CFS(完全公平调度器)算法实现多任务环境下资源分配的公平性与系统响应速度之间的微妙平衡。不同于传统摘要的概览性质,本文摘要将直接聚焦于CFS的核心原理、设计目标及面临的挑战,为读者揭开Linux高效调度的秘密。 ####
32 3
|
21天前
|
负载均衡 算法 Linux
深入探索Linux内核调度器:公平与效率的平衡####
本文通过剖析Linux内核调度器的工作机制,揭示了其在多任务处理环境中如何实现时间片轮转、优先级调整及完全公平调度算法(CFS),以达到既公平又高效地分配CPU资源的目标。通过对比FIFO和RR等传统调度策略,本文展示了Linux调度器如何在复杂的计算场景下优化性能,为系统设计师和开发者提供了宝贵的设计思路。 ####
33 6
|
23天前
|
传感器 人工智能 物联网
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
40 6
|
21天前
|
消息中间件 安全 Linux
深入探索Linux操作系统的内核机制
本文旨在为读者提供一个关于Linux操作系统内核机制的全面解析。通过探讨Linux内核的设计哲学、核心组件、以及其如何高效地管理硬件资源和系统操作,本文揭示了Linux之所以成为众多开发者和组织首选操作系统的原因。不同于常规摘要,此处我们不涉及具体代码或技术细节,而是从宏观的角度审视Linux内核的架构和功能,为对Linux感兴趣的读者提供一个高层次的理解框架。
|
23天前
|
缓存 并行计算 Linux
深入解析Linux操作系统的内核优化策略
本文旨在探讨Linux操作系统内核的优化策略,包括内核参数调整、内存管理、CPU调度以及文件系统性能提升等方面。通过对这些关键领域的分析,我们可以理解如何有效地提高Linux系统的性能和稳定性,从而为用户提供更加流畅和高效的计算体验。
29 2
|
22天前
|
缓存 网络协议 Linux
深入探索Linux操作系统的内核优化策略####
本文旨在探讨Linux操作系统内核的优化方法,通过分析当前主流的几种内核优化技术,结合具体案例,阐述如何有效提升系统性能与稳定性。文章首先概述了Linux内核的基本结构,随后详细解析了内核优化的必要性及常用手段,包括编译优化、内核参数调整、内存管理优化等,最后通过实例展示了这些优化技巧在实际场景中的应用效果,为读者提供了一套实用的Linux内核优化指南。 ####
45 1
下一篇
DataWorks