操作系统基础:内存管理概述【下】

简介: 操作系统基础:内存管理概述【下】



🌄1 两级页表

🏙️1.1 知识总览

🏙️1.2 单极页表存在的问题

🚂1.2.1 假设

页面大小为4KB,即212的字节,因此需要12个二进制位来存储,该计算机就支持32位,因此有20个二进制位表示页号,即可以表示220个页面,每个页面在页表中都必须对应一个页表项,因此页表中的页表项最多可以有220个,所以一个页表需要的最大空间为220*4 = 222B,而为了存储页表必须需要(222)/(2^12) = 2^10个连续的页框(页表必须连续存放)。

🚂1.2.2 结论

🏙️1.3 对第一个问题的解决

🚂1.3.1 思路

为了解决单极页表存在的几个问题,可以考虑将页表也进行分页并离散存储(单击页表中是将进程的页面离散存储)。

🚂1.3.2 原理

对于给定的计算机配置信息(按字节寻址,支持32位,页面大小为4kb,页表项长度为4b),一个进程最多有220个页面,而每个页框可以存储的页表项个数为4kb/4b=210 = 1024个页表项。由此,可以将页表的2^20拆分成1024组,每组有1024个页表项,用一个二级页表存储单级页表,

🚂1.3.3 逻辑结构的改变

32位二进制位中,前10位用来表示二级页表,后10位用来表示每个二级页表包含的单极页表,最后12位表示页面偏移量。

🚂1.3.4 如何进行寻址

简单来说就是逐个寻找,先找一级地址,再在一级地址内找二级地址,最后根据页面偏移量找到对应的物理地址

🏙️1.4 对第二个问题的解决

当需要的页面不在内存中时会发生缺页中断(这是一个内中断),接着将目标页面从外存调入内存。

🏙️1.5 其他需要注意的细节

1. 各级页表的大小不可以超过一个页面。如果分为两级页表后,各级页表还是超过一个页面,则应该采用更多的顶级页表。

TIPS:如果一个页表分为了好几页,那么不同页中可能页号有重叠,可能会照成无法区分顶级页表的后果。

例子:

业内偏移量位数实质上就是需要用几位二进制位来表示页面大小。这里4kb = 2^12,因此需要12位。每个页面包含的页表项个数位4kb/4b = 2^10个,因此一个页面最多可以包含10个二进制位。

由于页内偏移量为12位,因此页号位数为28位,而每级页表最多表示10位,因此此题需要分三级页表,分别占:8、10、10。逻辑结构如图:

2. 假如没有快表结构,那么N级页表访问一个逻辑地址需要经历N+1次访存,其中,依次访问各级页需要N次,最后得到了逻辑地址对应的物理地址后还需1次访存。

🏙️1.6 总结

🌄2 基本分段存储管理方法

🎡2.1 总览

🎡2.2 分段的基本概念

🚂2.2.1 定义

类比于程序,其中的main函数是一段,而定义在main函数之外的其他函数也是一段。

🚂2.2.2 特点

(1)当采用分段存储时,各段可以离散的存储,但是一个特定的段占据连续的内存空间。

(2)由于是按照逻辑功能划分模块,用户的编程更加方便,程序的可读性更加高。

(3)在编译程序时,系统会将段名转换为段号。

🚂2.2.3 实例

🚂2.2.4 逻辑地址结构

实例:对于编译后的机器汇编语言:

🎡2.3 段表的基本概念

🚃2.2.1 示意图

段表的作用类似于页表,记录各段的物理存储位置

🚃2.3.2 段表的特点

(1)与页表类似,由于段在逻辑上在连续存储的,所以段号实际上是不需要被保存的。

只需记录段长以及各段的长度(基址)

(2)段表项的长度是固定的。如果段的逻辑结构中段内地址为16位,系统使用16个二进

制位就可以表示最大段长;而系统的物理地址肯定也对应一个最大字节长度(假设为4GB,

对应32位);段号无须存储。因此可以让每个段表项占16+32=48位,即6个字节。

🎡2.4 地址的变换过程

1. 进程在发生切换时,其PCB会被放入段表寄存器。系统在得到逻辑地址后,将其分解为段号S、段内地址W。

2. 首先检查段号是否合法(段号是否越界)。假如S是否>=段表长度M(从段表寄存器中读取),那么段号越界,系统发生越界中断。注意此处因为段表长度至少为1,而段号从0开始,所以当S=M时也相当于越界。

3. 将段号在段表中进行匹配,并得到段长C,此时如果W>=C,那么段长越界,发生越界中断。注意当采用页表时此处无须比较,因为页表的各页表项的长度是固定的,但是段表的段长是不固定的。假如没有越界,那么就取出基址,将基址与段内地址相加得到最后的物理地址。

4. 示意图如下所示:

🎡2.5 分段、分页管理的区别

🚃2.5.1 存储逻辑的区别

🚃2.5.2 分段的优点

分段比分页更容易实现信息的共享和保护

(1)信息的共享

假设计算机采用分段管理,且有这样一段代码空间

其中1号段是A、B号进程都想访问的,那么只需让各进程的段表项指向同一个段即可实现共享

而假如计算机采用分页管理,那么上述的代码空间应变为:

页面不是按照逻辑模块划分的,此时就很难实现信息的共享

(2)信息的保护

与信息共享类似,假如进程A不允许某个进程访问某个空间,只需将这段置标记为不可访问即可。而分页管理就很难实现

🚃2.5.3 访问一个逻辑单元的访存次数

🎡2.6 总结

🌄3 段页式管理方法

🎢3.1 总览

🎢3.2 分段、分页的优缺点

🎢3.3 段页式管理的基本概念

比如说:

🎢3.4 段页式管理的逻辑地址结构

🚉3.4.1 结构划分

🚉3.4.2 解释

🚉3.4.3 注意

🎢3.5 段页式管理中的段表和页表

🚃3.5.1 段表

基本结构:

由于各段被分为几页是不确定的,因此需要记录页表的长度,同时为了确定物理地址,还需要存放页表的起始地址(页表存放块号)。每一个段需要对应一个页表。

从图中可以看出,每个段表项的长度是相同的(只需记录页表长度即起始块号),因此段号是可以隐藏的。

🚃3.5.2 页表

基本结构

页面的大小都是相同的,因此页号是隐藏的。只需记录各页号对应的内存块号即可。

🚃3.5.3 总结

一个进程会被划分为多个段,所有的段构成一段表。而每一个段会被划分为多个页面,因此一个段对应一个页表。

总结:一个进程对应一个段表,但对应多个页表。

🚃3.5.4 示意图

🎢3.6 地址转换过程

首先,进程被调度时,其PCB中的段表起始地址F与段表长度M都会被复制放入操作系统的段表寄存器中;

接着读出逻辑地址中的段号S,并与段表长度进行比较,假如S>=M,(这里的=与前面的段式管理类似)说明越界,产生越界中断。

段号合法后,操作系统根据段表起始地址F查询到该进程对应的段表,根据段号查询到对应的段表项,

操作系统从逻辑地址读出页号P,并于段表项中的页表长度L进行对比,假如P>L,说明页号越界,产生越界中断。

页号合法后,操作系统从段表项中读出页表起始地址,根据页号查询页表得到内存块号,并结合逻辑地址中的业内偏移量得到最终的物理地址并访问。

具体过程示意图如下:

访存过程中,操作系统共需要访问三次内存。第一次是查询段表,第二次是查询页表,第三次是访问目标地址。我们也可以引入快表,以段号和页号作为关键字。

🎢3.7 总结

🕮 4 总结

操作系统,如默默守护的守夜者,无声地管理硬件与软件的交流,为计算机创造和谐秩序。

它是无形的引导者,让复杂的任务变得井然有序,为用户提供无忧体验。

操作系统的巧妙设计,让计算机变得更加智能高效,让人与科技之间的交流更加顺畅。

在每一次启动中,它如信任的伙伴,带领我们进入数字世界的奇妙旅程。

渴望挑战操作系统的学习路径和掌握进阶技术?不妨点击下方链接,一同探讨更多操作系统的奇迹吧。我们推出了引领趋势的💻OS专栏:《OS从基础到进阶》 ,旨在深度探索OS的实际应用和创新。🌐🔍

相关文章
|
5天前
|
算法 调度 UED
深入理解操作系统内存管理:原理与实践
【4月更文挑战第23天】 在现代计算机系统中,操作系统的内存管理是保证系统高效、稳定运行的关键组成部分。本文旨在深入探讨操作系统中内存管理的理论基础、关键技术以及实际操作过程,通过对内存分配策略、虚拟内存技术、分页与分段机制等核心概念的详细解析,为读者提供一个清晰、全面的内存管理视角。此外,文章还将通过案例分析,展示内存管理在解决实际问题中的应用,以期加深读者对操作系统内存管理复杂性的认识和理解。
|
23小时前
|
存储 算法 安全
深入理解操作系统的内存管理机制
【4月更文挑战第27天】 本文将探讨操作系统中一个至关重要的组成部分——内存管理。我们将深入分析内存管理的基本原理,包括分页、分段和虚拟内存的概念,以及它们如何共同作用以支持现代多任务操作系统。文章还将讨论内存管理的关键性能指标,如页面置换算法的效率对系统响应时间的影响,以及内存碎片问题的解决方案。通过对这些高级概念的剖析,读者将获得操作系统内存管理机制深层次的认识。
|
1天前
|
缓存 算法 调度
深入理解操作系统的内存管理机制
【4月更文挑战第27天】 在现代计算机系统中,操作系统扮演着至关重要的角色,尤其在资源管理和调度方面。内存管理是操作系统的核心功能之一,它负责分配、跟踪和回收应用程序使用的物理内存。本文将探讨操作系统如何通过不同的内存管理技术来优化内存使用效率,包括分页、分段以及虚拟内存等概念。通过对这些技术的深入分析,读者将获得对操作系统内部工作原理的更深刻理解,并了解它们如何影响应用程序性能和系统稳定性。
|
1天前
|
算法
深入理解操作系统的内存管理
【4月更文挑战第26天】 在现代计算机系统中,操作系统的内存管理是确保系统高效、稳定运行的关键组成部分。本文将深入探讨操作系统内存管理的核心技术,包括虚拟内存、物理内存分配策略、分页和分段机制以及内存交换技术。通过分析这些技术的工作原理及其优缺点,读者将获得对操作系统如何优化内存使用和管理的深刻理解。
|
3天前
|
算法
探索现代操作系统的虚拟内存管理
【4月更文挑战第25天】 操作系统的心脏——虚拟内存管理,是确保多任务并发执行和系统稳定性的关键。本文将深入剖析虚拟内存的核心机制,包括分页、分段、请求调页以及交换技术。我们将探讨虚拟内存如何允许操作系统使用有限的物理内存来模拟更大的地址空间,以及这一过程对性能的影响。此外,文章还将介绍一些高级话题,比如内存分配策略、页面置换算法以及虚拟内存的优化方法。
|
4天前
|
存储 算法
深入理解操作系统的内存管理机制
【4月更文挑战第24天】 在现代计算机系统中,操作系统扮演着资源管理者的角色,其中内存管理是其核心职责之一。本文将探讨操作系统如何通过内存管理提升系统性能和稳定性,包括物理内存与虚拟内存的概念、分页机制、内存分配策略以及内存交换技术。我们将透过理论与实践的结合,分析内存管理的关键技术及其对系统运行效率的影响。
|
11天前
|
存储 算法 数据安全/隐私保护
深入理解操作系统的内存管理机制
【4月更文挑战第17天】 在现代计算机系统中,操作系统扮演着资源管理者的角色,其中内存管理是其核心职能之一。本文探讨了操作系统内存管理的关键技术,包括虚拟内存、物理内存分配与回收、分页和分段机制,以及内存交换技术。通过分析这些机制的原理和实现,我们旨在加深读者对操作系统如何有效管理和保护内存资源的理解。
|
12天前
|
算法
深入理解操作系统的内存管理机制
【4月更文挑战第15天】 本文将探讨操作系统中至关重要的一环——内存管理。不同于通常对内存管理概念的浅尝辄止,我们将深入研究其核心原理与实现策略,并剖析其对系统性能和稳定性的影响。文章将详细阐述分页系统、分段技术以及它们在现代操作系统中的应用,同时比较它们的效率与复杂性。通过本文,读者将获得对操作系统内存管理深层次工作机制的洞见,以及对设计高效、稳定内存管理系统的理解。
|
16天前
|
存储 大数据 量子技术
深入理解操作系统的内存管理
【4月更文挑战第12天】 在现代计算机系统中,操作系统扮演着关键角色,它负责协调和管理硬件资源,确保系统运行的高效与稳定。其中,内存管理是操作系统的核心功能之一,它涉及物理内存的分配、虚拟内存的映射以及内存保护等关键操作。本文旨在深入剖析操作系统内存管理的基本原理与实践,探讨其对系统性能和安全性的影响,并简述当前的挑战与创新方向。
|
18天前
|
存储 监控 算法
深入理解操作系统的内存管理
【4月更文挑战第10天】本文旨在深度剖析操作系统中的核心组件之一——内存管理。通过对其机制、策略和现代操作系统中的应用进行探讨,读者将获得对系统如何高效利用和管理内存资源的清晰理解。文章不仅覆盖了基础理论,还涉及了高级话题,如虚拟内存技术和内存优化策略,为希望深入了解操作系统内部工作原理的技术人员提供了宝贵的知识储备。