Albert 源码解析:分组复用

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: Albert 源码解析:分组复用
class AlbertGroup(nn.Module):
    def __init__(self, config):
        super(AlbertGroup, self).__init__()
        self.inner_group_num = config.inner_group_num
        self.inner_group = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)])
    def forward(self, hidden_states, attention_mask, head_mask):
        layer_attentions = ()
        layer_hidden_states = ()
        for inner_group_idx in range(self.inner_group_num): # [1]
            layer_module = self.inner_group[inner_group_idx]
            layer_outputs = layer_module(hidden_states, attention_mask, head_mask)
            hidden_states = layer_outputs[0]
            layer_attentions = layer_attentions + (layer_outputs[1],)
            layer_hidden_states = layer_hidden_states + (hidden_states,)
        return (layer_hidden_states, layer_attentions)
class AlbertTransformer(nn.Module):
    def __init__(self, config):
        super(AlbertTransformer, self).__init__()
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
        self.num_hidden_layers = config.num_hidden_layers
        self.num_hidden_groups = config.num_hidden_groups
        self.group = nn.ModuleList([AlbertGroup(config) for _ in range(config.num_hidden_groups)])
    def forward(self, hidden_states, attention_mask, head_mask):
        all_hidden_states = ()
        all_attentions = ()
        for layer_idx in range(self.num_hidden_layers):
            if self.output_hidden_states and layer_idx == 0:
                all_hidden_states = all_hidden_states + (hidden_states,)
      # [2]
            group_idx = int(layer_idx / self.num_hidden_layers * self.num_hidden_groups)
            layer_module = self.group[group_idx]
            layer_outputs = layer_module(hidden_states, attention_mask, head_mask[layer_idx])
            hidden_states = layer_outputs[0][-1]
            if self.output_attentions:
                all_attentions = all_attentions + layer_outputs[1]
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + layer_outputs[0]
        outputs = (hidden_states,)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            outputs = outputs + (all_attentions,)
        return outputs  # last-layer hidden state, (all hidden states), (all attentions)

config.inner_group_num是组内TFBlock数量,这里记为 GS,num_hidden_layers是总的 TFBlock 层数,记为 LC,num_hidden_groups是分组数量,记为 GC。

可以看出来AlbertGroup含有 GS 个AlbertLayer(也就是TFBlock),逻辑就是依次调用它里面的AlbertLayer([1])。 GS 应该等于LC // GC,但是源码里面三个值都能自由设定,没有校验。

然后AlbertTransformer含有 GC 个AlbertGroup,这些AlbertGroup都是重复使用的。在正向传播期间,程序遍历每一层,根据层序号得到分组序号,然后调用整个分组,也就是把隐藏向量传入层里面所有的组([2])。

直观演示,假设:

LC = 12
GC = 3
GS = LC // GC = 4

那么第一轮迭代,Li = 0, Gi = 0,隐藏向量以此传入G0L0, G0L1, G0L2, G0L3

之后的三轮迭代,Li = 1, 2, 3,还是Gi = 0,隐藏向量以相同方式传入G0L0, G0L1, G0L2, G0L3三次。

之后,Li = 4, 5, 6, 7Gi = 1,隐藏向量传入G1L0, G1L1, G1L2, G1L3四次。

之后,Li = 8, 9, 10, 11Gi = 2,隐藏向量传入G2L0, G2L1, G2L2, G2L3四次。

整体的模块调用路径是这样:

G0L0, G0L1, G0L2, G0L3
G0L0, G0L1, G0L2, G0L3
G0L0, G0L1, G0L2, G0L3
G0L0, G0L1, G0L2, G0L3
G1L0, G1L1, G1L2, G1L3
G1L0, G1L1, G1L2, G1L3
G1L0, G1L1, G1L2, G1L3
G1L0, G1L1, G1L2, G1L3
G2L0, G2L1, G2L2, G2L3
G2L0, G2L1, G2L2, G2L3
G2L0, G2L1, G2L2, G2L3
G2L0, G2L1, G2L2, G2L3

也就是层数是 12 没错,组数是 3 没错,但是每个组被复用了 4 次。

关于复用来看,有三个关键参数,第一个是每个组的容量,也就是 GS,第二个是一共有多少组,也就是GC,第三个是每个组复用多少次,实际上等于LC // GC,但这里面没有任何一个参数直接设置这个,你只能设置 LC。估计是为了和前代保持一致,但非常非常不好用。

假设我们把这个参数开放出来,叫做 GR(分组副本),那么并让 LC = GS * GR * GC,一切就合理了。我们完全可以将重复的层看作新的一层,只不过参数是和其他层共享的。

而且这套设置同时兼容跨层复用和相邻层的复用:

L0, L0, L1, L1, ..., LN, LN

对于相邻层复用,我们只需要把GS设成 1,GR设成 2,GC设成 N。

还有一种是跨层复用:

L0, L1, L2, ..., LN, L0, L1, L2, ... LN

我们只需要把GC设成 1,GS设成 N,然后GR设成 2 。

相关文章
|
1月前
|
自然语言处理 数据处理 索引
mindspeed-llm源码解析(一)preprocess_data
mindspeed-llm是昇腾模型套件代码仓,原来叫"modelLink"。这篇文章带大家阅读一下数据处理脚本preprocess_data.py(基于1.0.0分支),数据处理是模型训练的第一步,经常会用到。
53 0
|
2月前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
2月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2月前
|
安全 搜索推荐 数据挖掘
陪玩系统源码开发流程解析,成品陪玩系统源码的优点
我们自主开发的多客陪玩系统源码,整合了市面上主流陪玩APP功能,支持二次开发。该系统适用于线上游戏陪玩、语音视频聊天、心理咨询等场景,提供用户注册管理、陪玩者资料库、预约匹配、实时通讯、支付结算、安全隐私保护、客户服务及数据分析等功能,打造综合性社交平台。随着互联网技术发展,陪玩系统正成为游戏爱好者的新宠,改变游戏体验并带来新的商业模式。
|
2月前
|
PyTorch Shell API
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
|
3月前
|
缓存 监控 Java
Java线程池提交任务流程底层源码与源码解析
【11月更文挑战第30天】嘿,各位技术爱好者们,今天咱们来聊聊Java线程池提交任务的底层源码与源码解析。作为一个资深的Java开发者,我相信你一定对线程池并不陌生。线程池作为并发编程中的一大利器,其重要性不言而喻。今天,我将以对话的方式,带你一步步深入线程池的奥秘,从概述到功能点,再到背景和业务点,最后到底层原理和示例,让你对线程池有一个全新的认识。
76 12
|
3月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
133 2
|
3月前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
106 1
|
3月前
|
消息中间件 缓存 安全
Future与FutureTask源码解析,接口阻塞问题及解决方案
【11月更文挑战第5天】在Java开发中,多线程编程是提高系统并发性能和资源利用率的重要手段。然而,多线程编程也带来了诸如线程安全、死锁、接口阻塞等一系列复杂问题。本文将深度剖析多线程优化技巧、Future与FutureTask的源码、接口阻塞问题及解决方案,并通过具体业务场景和Java代码示例进行实战演示。
78 3

热门文章

最新文章

推荐镜像

更多